The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Difference in substrate specificity divides the yeast alkali-metal-cation/H(+) antiporters into two subfamilies.

Yeast plasma membrane Na(+)/H(+) antiporters (TC 2.A.36) share a high degree of similarity at the protein level. Expression of four antiporters (Saccharomyces cerevisiae Nha1p, Candida albicans Cnh1p, Zygosaccharomyces rouxii ZrSod2-22p and Schizosaccharomyces pombe sod2p) in a SACCH: cerevisiae mutant strain lacking both Na(+)-ATPase and Na(+)/H(+) antiporter genes made it possible to study the transport properties and contribution to cell salt tolerance of all antiporters under the same conditions. The ZrSod2-22p of the osmotolerant yeast Z. rouxii has the highest transport capacity for lithium and sodium but, like the SCHIZ: pombe sod2p, it does not recognize K(+) and Rb(+) as substrates. The SACCH: cerevisiae Nha1p and C. albicans Cnh1p have a broad substrate specificity for at least four alkali metal cations (Na(+), Li(+), K(+), Rb(+)), but their contribution to overall cell tolerance to high external concentration of toxic Na(+) and Li(+) cations seems to be lower compared to the antiporters of SCHIZ: pombe and especially Z. rouxii.[1]

References

  1. Difference in substrate specificity divides the yeast alkali-metal-cation/H(+) antiporters into two subfamilies. Kinclová, O., Potier, S., Sychrová, H. Microbiology (Reading, Engl.) (2002) [Pubmed]
 
WikiGenes - Universities