The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Expression and regulation of WNT8A and WNT8B mRNAs in human tumor cell lines: up-regulation of WNT8B mRNA by beta-estradiol in MCF-7 cells, and down-regulation of WNT8A and WNT8B mRNAs by retinoic acid in NT2 cells.

Xenopus wnt-8 (Xwnt-8) is one of the most potent Wnts to activate the WNT - beta-catenin - TCF signaling pathway. We have previously cloned and characterized WNT8A and WNT8B, two human homologues of Xwnt-8. Here, we investigated expression and regulation of WNT8A and WNT8B mRNAs in human tumor cell lines by using cDNA-PCR. WNT8A mRNA was undetectable in 7 pancreatic cancer cell lines, but WNT8B mRNA was detected in pancreatic cancer cell lines PSN-1, BxPC-3, MIA PaCa-2. Both WNT8A and WNT8B mRNAs were undetectable in 7 brain tumor cell lines. Although WNT8A mRNA was undetectable in 3 breast cancer cell lines, WNT8B mRNA was detected in the breast cancer cell line MCF-7. WNT8B mRNA, but not WNT8A mRNA, was significantly up-regulated by beta-estradiol in MCF-7 cells. WNT8A mRNA was detected in embryonal tumor cell lines NEC-14, NCC-IT, and NT2, while WNT8B mRNA was detected in embryonal tumor cell lines NEC-8, NEC-14, and NT2. Because NT2 cells differentiate into neuronal cells after all-trans retinoic-acid treatment, effects of all-trans retinoic acid on mRNA expression of WNT8A and WNT8B were next investigated. WNT8A and WNT8B mRNAs were down-regulated together in NT2 cells after all-trans retinoic-acid treatment. WNT8A and WNT8B might play key roles in embryonal tumors and embryonic stem cells through synergistic activation of the beta-catenin - TCF signaling pathway.[1]

References

 
WikiGenes - Universities