The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Gene Review

ctnnb1-b  -  catenin (cadherin-associated protein),...

Xenopus laevis

Synonyms: beta-catenin, ctnnb, ctnnb1
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of beta-catenin

  • Mutations in components of the Wnt/beta-catenin pathway are observed to be the earliest initiating event for most colorectal tumors [1].
  • Moreover, the specific APC mutations associated in colon cancer indicate the possibility that the tumor selects for certain truncated forms of APC that partially retain its function, namely, inhibition of beta-catenin [1].
  • This novel human CKIdelta mutation may alter the physiological role and enhance the transforming ability of CKIdelta through a Wnt/beta-catenin independent mechanism and thereby influence colonic adenoma development [2].
  • Disease-associated casein kinase I delta mutation may promote adenomatous polyps formation via a Wnt/beta-catenin independent mechanism [2].
 

High impact information on beta-catenin

 

Biological context of beta-catenin

  • As greater levels and nuclear accumulation of beta-catenin on the future dorsal side of the embryo correlate with the induction of specific dorsal genes, our data suggest that early asymmetries in beta-catenin presage and may specify dorso-ventral differences in gene expression and cell fate [6].
  • We show that beta-catenin, a component of Wnt signaling pathway, physically interacts with Sox17 and potentiates its transcriptional activation of target genes [7].
  • Furthermore we show that beta-catenin, an intracellular protein implicated in the Wnt signal transduction cascade, mimics the activity of Xwnt3a [8].
  • Full-length Xfz7 rescues the morpholino-induced phenotype, as does activated beta-catenin, suggesting that Xfz7 is signaling through the canonical pathway [9].
  • The major nuclear transducers of Wnt signals are the Tcf/LEF family of transcription factors, which have binding sites for both the transcriptional co-repressor groucho, and the co-activator beta-catenin [10].
 

Anatomical context of beta-catenin

 

Associations of beta-catenin with chemical compounds

  • Taken together, these results suggest that activation of beta-catenin signaling by lithium in this system may occur through a distinct activation mechanism that does not require modulation of levels through regulation of proteasomal degradation [15].
  • The binding domain of beta-catenin has been mapped to the NH2-terminal 210 amino acids of alphaN-catenin [16].
  • The serine/threonine kinase Xgsk-3 and the intracellular protein beta-catenin are necessary for the establishment of the dorsal-ventral axis in Xenopus [17].
  • Lithium chloride exposure also causes ectopic nuclear localization of beta-catenin in cells of the epiblast in the area pellucida [18].
  • Here, we show that beta-catenin physically and functionally targets the MED12 subunit in Mediator to activate transcription [19].
 

Physical interactions of beta-catenin

 

Regulatory relationships of beta-catenin

 

Other interactions of beta-catenin

  • Addition of exogenous beta-catenin protein induced expression of Siamois, XTwin, Xnr3, and Cerberus mRNAs in a protein synthesis independent manner, whereas a panel of other Spemann organizer-specific genes did not respond to beta-catenin [15].
  • The present results suggest an additional function for beta-Catenin, the early activation of expression of secreted BMP antagonists, such as Chordin, in a preorganizer region in the dorsal side of the Xenopus blastula [13].
  • This neural induction correlates with the expression of chordin and other BMP inhibitors-such as noggin, follistatin, and Xnr3-at the blastula stage, and requires beta-Catenin signaling [13].
  • Based on these observations, we propose that Frodo and Dapper link Dsh and TCF to regulate Wnt target genes in a pathway parallel to that of beta-catenin [27].
  • Interestingly, the Wnt-5A class did not block goosecoid expression or axis induction in response to overexpression of cytoplasmic components of the Wnt-1 signaling pathway, beta-catenin or a kinase-dead gsk-3, or to the unrelated secreted factor, BVg1 [28].
 

Analytical, diagnostic and therapeutic context of beta-catenin

References

  1. Wnt pathway mutations selected by optimal beta-catenin signaling for tumorigenesis. Cho, K.H., Baek, S., Sung, M.H. FEBS Lett. (2006) [Pubmed]
  2. Disease-associated casein kinase I delta mutation may promote adenomatous polyps formation via a Wnt/beta-catenin independent mechanism. Tsai, I.C., Woolf, M., Neklason, D.W., Branford, W.W., Yost, H.J., Burt, R.W., Virshup, D.M. Int. J. Cancer (2007) [Pubmed]
  3. GBP, an inhibitor of GSK-3, is implicated in Xenopus development and oncogenesis. Yost, C., Farr, G.H., Pierce, S.B., Ferkey, D.M., Chen, M.M., Kimelman, D. Cell (1998) [Pubmed]
  4. XTcf-3 transcription factor mediates beta-catenin-induced axis formation in Xenopus embryos. Molenaar, M., van de Wetering, M., Oosterwegel, M., Peterson-Maduro, J., Godsave, S., Korinek, V., Roose, J., Destrée, O., Clevers, H. Cell (1996) [Pubmed]
  5. Overexpression of cadherins and underexpression of beta-catenin inhibit dorsal mesoderm induction in early Xenopus embryos. Heasman, J., Crawford, A., Goldstone, K., Garner-Hamrick, P., Gumbiner, B., McCrea, P., Kintner, C., Noro, C.Y., Wylie, C. Cell (1994) [Pubmed]
  6. Establishment of the dorso-ventral axis in Xenopus embryos is presaged by early asymmetries in beta-catenin that are modulated by the Wnt signaling pathway. Larabell, C.A., Torres, M., Rowning, B.A., Yost, C., Miller, J.R., Wu, M., Kimelman, D., Moon, R.T. J. Cell Biol. (1997) [Pubmed]
  7. Sox17 and beta-catenin cooperate to regulate the transcription of endodermal genes. Sinner, D., Rankin, S., Lee, M., Zorn, A.M. Development (2004) [Pubmed]
  8. Specification of the anteroposterior neural axis through synergistic interaction of the Wnt signaling cascade with noggin and follistatin. McGrew, L.L., Lai, C.J., Moon, R.T. Dev. Biol. (1995) [Pubmed]
  9. Frizzled7 mediates canonical Wnt signaling in neural crest induction. Abu-Elmagd, M., Garcia-Morales, C., Wheeler, G.N. Dev. Biol. (2006) [Pubmed]
  10. Maternal XTcf1 and XTcf4 have distinct roles in regulating Wnt target genes. Standley, H.J., Destrée, O., Kofron, M., Wylie, C., Heasman, J. Dev. Biol. (2006) [Pubmed]
  11. Cooperation between the activin and Wnt pathways in the spatial control of organizer gene expression. Crease, D.J., Dyson, S., Gurdon, J.B. Proc. Natl. Acad. Sci. U.S.A. (1998) [Pubmed]
  12. The Wnt/beta-catenin pathway posteriorizes neural tissue in Xenopus by an indirect mechanism requiring FGF signalling. Domingos, P.M., Itasaki, N., Jones, C.M., Mercurio, S., Sargent, M.G., Smith, J.C., Krumlauf, R. Dev. Biol. (2001) [Pubmed]
  13. Neural induction in the absence of mesoderm: beta-catenin-dependent expression of secreted BMP antagonists at the blastula stage in Xenopus. Wessely, O., Agius, E., Oelgeschläger, M., Pera, E.M., De Robertis, E.M. Dev. Biol. (2001) [Pubmed]
  14. Depletion of Bmp2, Bmp4, Bmp7 and Spemann organizer signals induces massive brain formation in Xenopus embryos. Reversade, B., Kuroda, H., Lee, H., Mays, A., De Robertis, E.M. Development (2005) [Pubmed]
  15. A cell-free assay system for beta-catenin signaling that recapitulates direct inductive events in the early xenopus laevis embryo. Nelson, R.W., Gumbiner, B.M. J. Cell Biol. (1999) [Pubmed]
  16. Antagonism of cell adhesion by an alpha-catenin mutant, and of the Wnt-signaling pathway by alpha-catenin in Xenopus embryos. Sehgal, R.N., Gumbiner, B.M., Reichardt, L.F. J. Cell Biol. (1997) [Pubmed]
  17. The axis-inducing activity, stability, and subcellular distribution of beta-catenin is regulated in Xenopus embryos by glycogen synthase kinase 3. Yost, C., Torres, M., Miller, J.R., Huang, E., Kimelman, D., Moon, R.T. Genes Dev. (1996) [Pubmed]
  18. Nuclear beta-catenin and the development of bilateral symmetry in normal and LiCl-exposed chick embryos. Roeser, T., Stein, S., Kessel, M. Development (1999) [Pubmed]
  19. Mediator is a transducer of Wnt/beta-catenin signaling. Kim, S., Xu, X., Hecht, A., Boyer, T.G. J. Biol. Chem. (2006) [Pubmed]
  20. CRM1- and Ran-independent nuclear export of beta-catenin. Wiechens, N., Fagotto, F. Curr. Biol. (2001) [Pubmed]
  21. Regulation of Wnt signaling by Sox proteins: XSox17 alpha/beta and XSox3 physically interact with beta-catenin. Zorn, A.M., Barish, G.D., Williams, B.O., Lavender, P., Klymkowsky, M.W., Varmus, H.E. Mol. Cell (1999) [Pubmed]
  22. The maternal Xenopus beta-catenin signaling pathway, activated by frizzled homologs, induces goosecoid in a cell non-autonomous manner. Brown, J.D., Hallagan, S.E., McGrew, L.L., Miller, J.R., Moon, R.T. Dev. Growth Differ. (2000) [Pubmed]
  23. The Wnt/Wg signal transducer beta-catenin controls fibronectin expression. Gradl, D., Kühl, M., Wedlich, D. Mol. Cell. Biol. (1999) [Pubmed]
  24. Frizzled receptor dimerization is sufficient to activate the Wnt/beta-catenin pathway. Carron, C., Pascal, A., Djiane, A., Boucaut, J.C., Shi, D.L., Umbhauer, M. J. Cell. Sci. (2003) [Pubmed]
  25. Control of beta-catenin stability: reconstitution of the cytoplasmic steps of the wnt pathway in Xenopus egg extracts. Salic, A., Lee, E., Mayer, L., Kirschner, M.W. Mol. Cell (2000) [Pubmed]
  26. Repression of Wnt/beta-catenin signaling in the anterior endoderm is essential for liver and pancreas development. McLin, V.A., Rankin, S.A., Zorn, A.M. Development (2007) [Pubmed]
  27. The involvement of Frodo in TCF-dependent signaling and neural tissue development. Hikasa, H., Sokol, S.Y. Development (2004) [Pubmed]
  28. Activities of the Wnt-1 class of secreted signaling factors are antagonized by the Wnt-5A class and by a dominant negative cadherin in early Xenopus development. Torres, M.A., Yang-Snyder, J.A., Purcell, S.M., DeMarais, A.A., McGrew, L.L., Moon, R.T. J. Cell Biol. (1996) [Pubmed]
  29. The armadillo homologs beta-catenin and plakoglobin are differentially expressed during early development of Xenopus laevis. DeMarais, A.A., Moon, R.T. Dev. Biol. (1992) [Pubmed]
  30. Site-specific casein kinase 1epsilon-dependent phosphorylation of Dishevelled modulates beta-catenin signaling. Klimowski, L.K., Garcia, B.A., Shabanowitz, J., Hunt, D.F., Virshup, D.M. FEBS J. (2006) [Pubmed]
  31. Xenopus cadherin-11 restrains cranial neural crest migration and influences neural crest specification. Borchers, A., David, R., Wedlich, D. Development (2001) [Pubmed]
 
WikiGenes - Universities