The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Dual actions of lanthanides on ACTH-inhibited leak K(+) channels.

Bovine adrenal zona fasciculata cells express background K(+) channels (I(AC) channels) whose activity is potently inhibited by ACTH. In whole cell patch clamp recordings, it was discovered that the trivalent lanthanides (Ln(3+)s) lanthanum and ytterbium interact with two binding sites to modulate K(+) flow through these channels. Despite large differences in ionic radii, these Ln(3+)s inhibited I(AC) channels half-maximally with IC(50) values near 50 microM. In addition, these Ln(3+)s blocked and reversed ACTH-mediated inhibition of I(AC) K(+) channels at similar concentrations. The Ln(3+)s did not alter inhibition of I(AC) by angiotensin II or cAMP. Ln(3+)-induced uncoupling of ACTH receptor activation from I(AC) inhibition was prevented by raising the external Ca(2+) concentration from 2 to 10 mM. The divalent cation Ni(2+) (500 microM) also blocked ACTH-dependent inhibition of I(AC) through a Ca(2+)-sensitive mechanism. The results are consistent with a model in which Ln(3+)s produce opposing actions on I(AC) K(+) currents through two separate binding sites. In addition to directly inhibiting I(AC), Ln(3+)s (and Ni(2+)) bind with high affinity to a Ca(2+)-selective site associated with the ACTH receptor. By displacing Ca(2+) from this site, Ln(3+)s prevent ACTH from binding and accelerate its dissociation. These results identify Ln(3+)s as a relatively potent group of noncompetitive ACTH receptor antagonists. Allosteric actions of trivalent and divalent metal cations on hormone binding, mediated through Ca(2+)-specific sites, may be common to a variety of peptide hormone receptors.[1]

References

  1. Dual actions of lanthanides on ACTH-inhibited leak K(+) channels. Enyeart, J.J., Xu, L., Enyeart, J.A. Am. J. Physiol. Endocrinol. Metab. (2002) [Pubmed]
 
WikiGenes - Universities