The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Protein calorie restriction affects nonhepatic IGF-I production and the lymphoid system: studies using the liver-specific IGF-I gene-deleted mouse model.

Nutritional status is a critical factor that modulates the responsiveness of the liver to GH and the resulting production of endocrine (mostly liver-derived) IGF-I. Using a conditional Cre/lox P system, we have established a liver-specific IGF-I-deficient mouse model. Despite the reduction in the circulating IGF-I (75%), the growth parameters are normal, except for the reduced spleen size, providing a unique model to study the effect of protein restriction on the autocrine/paracrine GH/IGF-I axis. To determine the effects of protein calorie malnutrition on the spleen, liver-specific IGF-I-deficient mice were assigned to one of four isocaloric diets, differing in the protein content (20, 12, 4, and 0%), for a period of 10 d. A low protein intake decreased the nonhepatic IGF-I secretion into the circulation, whereas it caused an increase in the level of circulating GH. This supports the view that nonhepatic IGF-I production contributes to circulating IGF-I levels. The lack of dietary protein led to an up-regulation of GH and IGF-I receptors expression in the spleen, whereas the IGF-I mRNA remained unchanged, as was demonstrated by flow cytometry and ribonuclease protection assay. B lymphocytes seem to be responsible for the up-regulated GH/IGF-I receptor expression. Northern blot analysis showed an up-regulation of IGF-binding protein-3 mRNA levels, which suggests that the protein deprivation may lead to an increased sequestration of circulating or locally synthesized IGF-I. These results support the hypothesis that the splenic GH/IGF-I axis responds to the nutritional stress caused by a low protein intake, to maintain the tissue homeostasis.[1]

References

  1. Protein calorie restriction affects nonhepatic IGF-I production and the lymphoid system: studies using the liver-specific IGF-I gene-deleted mouse model. Naranjo, W.M., Yakar, S., Sanchez-Gomez, M., Perez, A.U., Setser, J., LERoith, D. Endocrinology (2002) [Pubmed]
 
WikiGenes - Universities