A mouse kidney cell line with a G:C --> C:G transversion mutator phenotype.
We report the identification of a mouse kidney epithelial cell line (K435) in which G:C-->C:G transversion mutations occur at an elevated rate and are the predominant spontaneous events observed at the selectable Aprt locus. Of three genotoxins tested, ultraviolet radiation (UV), ionizing radiation, and hydrogen peroxide, only UV exposure was able to alter the spectrum of small mutational events. To determine if the G:C-->C:G mutator phenotype was due to a deficiency in the mismatch repair pathway, the K435 cells were tested for resistance to 6-thioguanine, cisplatin, and MNNG. Although the K435 cells were as resistant to 6-thioguanine and cisplatin as Pms2 and Mlh1 null kidney cells, they were hypersensitive to MNNG. Moreover, the K435 cells do not exhibit microsatellite instability, a hallmark of mismatch repair deficiency. These results suggest that a novel mechanism, which does not include a classical deficiency in mismatch repair, accounts for the G:C-->C:G mutator phenotype.[1]References
- A mouse kidney cell line with a G:C --> C:G transversion mutator phenotype. Shin, C.Y., Ponomareva, O.N., Connolly, L., Turker, M.S. Mutat. Res. (2002) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg