Detergent-insoluble glycosphingolipid/cholesterol microdomains of the myelin membrane.
Glycosphingolipids and cholesterol form lateral assemblies, or lipid 'rafts', within biological membranes. Lipid rafts are routinely studied biochemically as low-density, detergent-insoluble complexes (in non-ionic detergents at 4 degrees C; DIGs, detergent-insoluble glycosphingolipid/cholesterol microdomains). Recent discrepancies recommended a re-evaluation of the conditions used for the biochemical analysis of lipid rafts. We have investigated the detergent insolubility of several known proteins present in the glycosphingolipid/cholesterol-rich myelin membrane, using four detergents representing different chemical classes (TX-100, CHAPS, Brij 96 and TX-102), under four conditions: detergent extraction of myelin either at (i) 4 degrees C or (ii) 37 degrees C, or at 4 degrees C after pre-extraction with (iii) saponin or (iv) methyl-beta-cyclodextrin (MbetaCD). Each detergent was different in its ability to solubilize myelin proteins and in the density of the DIGs produced. Brij 96 DIGs floated to a lower density than other detergents tested, possibly representing a subpopulation of DIGs in myelin. DIGs pre-extracted with saponin were denser than DIGs pre-extracted with MbetaCD. Furthermore, pre-extraction with MbetaCD solubilized proteolipid protein (known to associate with cholesterol), whereas pre-extraction with saponin did not, suggesting that saponin is less effective as a cholesterol-perturbing agent than is MbetaCD. These results demonstrate that DIGs isolated by different detergents are not necessarily comparable, and that these detergent-specific DIGs may represent distinct biochemical, and possibly physiological, entities based on the solubilities of specific lipids/proteins in each type of detergent.[1]References
- Detergent-insoluble glycosphingolipid/cholesterol microdomains of the myelin membrane. Taylor, C.M., Coetzee, T., Pfeiffer, S.E. J. Neurochem. (2002) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg