The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

In vitro investigation of titanium and hydroxyapatite dental implant surfaces using a rat bone marrow stromal cell culture system.

In this study, rat bone marrow cells (RBM) were used to evaluate different titanium and hydroxyapatite dental implant surfaces. The implant surfaces investigated were: a titanium surface having a porous titanium plasma-sprayed coating (sample code Ti-TPS), a titanium surface with a deep profile structure (sample code Ti-DPS), an uncoated titanium substrate with a machined surface (sample code Ti-ma) and a machined titanium substrate with a porous hydroxyapatite plasma-sprayed coating (sample code Ti-HA). RBM cells were cultured on the disc-shaped test substrates for 14 days. The culture medium was changed daily and examined for calcium and phosphate concentrations. After 14 days specimens were examined by light microscopy, scanning electron microscopy, energy dispersive X-ray analysis and morphometry of the cell-covered substrate surface. All test substrates facilitated RBM growth of extracellular matrix formation. Ti-DPS and Ti-TPS to the highest degree, followed by Ti-ma and Ti-HA. Ti-DPS and Ti-TPS displayed the highest cell density and thus seem to be well suited for the endosseous portion of dental implants. RBM cells cultured on Ti-HA showed a delayed growth pattern. This may be related to its high phosphate ion release.[1]


WikiGenes - Universities