The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Effects of new antifouling compounds on the development of sea urchin.

Tributyltin oxide (TBTO) has been used worldwide in marine antifouling paints as a biocide for some time. However, it produced toxic effects, especially in marine water/sediment ecosystems. Consequently, its use in antifouling paints has been prohibited in many countries. In this study, the toxicity of alternative and/or new antifouling biocides compared with TBTO is assessed by a biological method. The effects of these chemicals on marine species have not been well studied. This paper assesses, comparatively, the effects of eight biocides on sea urchin eggs and embryos. The chemicals assessed were TBTO, Irgarol 1051, M1 (the persistent degradation product of Irgarol), Diuron, zinc pyrithione, 'KH101', 'Sea-Nine 211', and copper pyrithione. For these chemicals, toxicity appears to be in the order zinc pyrithione > Sea-Nine 211 > KH101 > copper pyrithione > TBTO > Diuron approximately = Irgarol 1051 > M1. Here, we show that zinc pyrithione, Sea-Nine 211, KH101, and copper pyrithione are much more toxic to sea urchins than TBTO or the other chemicals.[1]

References

  1. Effects of new antifouling compounds on the development of sea urchin. Kobayashi, N., Okamura, H. Mar. Pollut. Bull. (2002) [Pubmed]
 
WikiGenes - Universities