The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

Cybutrin     N'-cyclopropyl-6- methylsulfanyl-N-tert...

Synonyms: Cybutryne, Irgarol, Irgarol(R), Irgarol 1051, Irgarol 1071, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of C10927

  • The antifouling boosting agent Irgarol 1051 is a strong inhibitor of the photosystem II (PSII) with high efficiency/toxicity towards algae [1].
 

High impact information on C10927

  • The ability of Irgarol 1051 to compete for the antibody binding sites with 11 horseradish peroxidase enzyme tracers, differing in the chemical structures of the hapten, has been investigated [2].
  • Optimum analytical SPME performance was achieved using the PDMS-DVB 65 microm fiber coating in ECD and FTD systems for Sea Nine 211 and Irgarol 1051, respectively [3].
  • The development of an immunoaffinity chromatography (IAC) procedure for the selective extraction of the anti-fouling agent Irgarol 1051 [2-(tert.-butylamino)-4-(cyclopropylamino)-6-(methylthio)-1,3,5-triazine] from seawater is described [4].
  • Recent studies have shown that Irgarol 1051 inhibits coral photosynthesis at environmentally relevant concentrations, consistent with its mode of action as a photosystem II inhibitor [5].
  • Indeed, class-specific biomass for chlorophytes as determined by CHEMTAX and microscopy were correlated (R2=0.53) which demonstrated an increase in both abundance and carbon content following exposures to Irgarol 1051 [6].
 

Chemical compound and disease context of C10927

 

Biological context of C10927

 

Associations of C10927 with other chemical compounds

 

Gene context of C10927

  • Fv/Fm and growth were strongly affected by Irgarol 1051 exposure, but Hsp70 levels were unaltered following exposure to the herbicide [16].
  • The main pollutants found in the sampled points were diuron and Irgarol 1051 that were detected at concentrations up to 2.19 micrograms l-1 and 0.33 microgram l-1, respectively [17].
 

Analytical, diagnostic and therapeutic context of C10927

References

  1. Assessing the effects of Irgarol 1051 on marine phytoplankton populations in Key Largo Harbor, Florida. Zamora-Ley, I.M., Gardinali, P.R., Jochem, F.J. Mar. Pollut. Bull. (2006) [Pubmed]
  2. Influence of the hapten design on the development of a competitive ELISA for the determination of the antifouling agent Irgarol 1051 at trace levels. Ballesteros, B., Barceló, D., Sanchez-Baeza, F., Camps, F., Marco, M.P. Anal. Chem. (1998) [Pubmed]
  3. Analysis of antifouling biocides Irgarol 1051 and Sea Nine 211 in environmental water samples using solid-phase microextraction and gas chromatography. Lambropoulou, D.A., Sakkas, V.A., Albanis, T.A. Journal of chromatography. A. (2002) [Pubmed]
  4. Development and application of immunoaffinity chromatography for the determination of the triazinic biocides in seawater. Carrasco, P.B., Escolà, R., Marco, M.P., Bayona, J.M. Journal of chromatography. A. (2001) [Pubmed]
  5. Preliminary examination of short-term cellular toxicological responses of the coral Madracis mirabilis to acute Irgarol 1051 exposure. Downs, C., Downs, A. Arch. Environ. Contam. Toxicol. (2007) [Pubmed]
  6. The effects of a PSII inhibitor on phytoplankton community structure as assessed by HPLC pigment analyses, microscopy and flow cytometry. Devilla, R.A., Brown, M.T., Donkin, M., Readman, J.W. Aquat. Toxicol. (2005) [Pubmed]
  7. The interactive effects of binary mixtures of three antifouling biocides and three heavy metals against the marine algae Chaetoceros gracilis. Koutsaftis, A., Aoyama, I. Environ. Toxicol. (2006) [Pubmed]
  8. Effects of new antifouling compounds on the development of sea urchin. Kobayashi, N., Okamura, H. Mar. Pollut. Bull. (2002) [Pubmed]
  9. Toxicity of anti-fouling biocides to Parorchis acanthus (Digenea: Philophthalmidae) cercarial encystment. Morley, N.J., Leung, K.M., Morritt, D., Crane, M. Dis. Aquat. Org. (2003) [Pubmed]
  10. Identification and characterization of a new degradation product of Irgarol-1051 in mercuric chloride-catalyzed hydrolysis reaction and in coastal waters. Lam, K.H., Lam, M.H., Lam, P.K., Qian, T., Cai, Z., Yu, H., Cheung, R.Y. Mar. Pollut. Bull. (2004) [Pubmed]
  11. Environmental risk limits for antifouling substances. van Wezel, A.P., van Vlaardingen, P. Aquat. Toxicol. (2004) [Pubmed]
  12. Inhibition of coral photosynthesis by the antifouling herbicide Irgarol 1051. Owen, R., Knap, A., Toaspern, M., Carbery, K. Mar. Pollut. Bull. (2002) [Pubmed]
  13. Survey of four marine antifoulant constituents (copper, zinc, diuron and Irgarol 1051) in two UK estuaries. Comber, S.D., Gardner, M.J., Boxall, A.B. Journal of environmental monitoring : JEM. (2002) [Pubmed]
  14. Degradation of the antifouling compound Irgarol 1051 by manganese peroxidase from the white rot fungus Phanerochaete chrysosporium. Ogawa, N., Okamura, H., Hirai, H., Nishida, T. Chemosphere (2004) [Pubmed]
  15. Immunosensors for pollutants working in organic media. Study of performances of different tracers with luminescent detection. González-Martínez, M.A., Penalva, J., Rodríguez-Urbis, J.C., Brunet, E., Maquieira, A., Puchades, R. Analytical and bioanalytical chemistry. (2006) [Pubmed]
  16. Hsp70 expression in Enteromorpha intestinalis (Chlorophyta) exposed to environmental stressors. Lewis, S., Donkin, M.E., Depledge, M.H. Aquat. Toxicol. (2001) [Pubmed]
  17. Occurrence of antifouling biocides in the Spanish Mediterranean marine environment. Martínez, K., Ferrer, I., Hernando, M.D., Fernández-Alba, A.R., Marcé, R.M., Borrull, F., Barceló, D. Environmental technology. (2001) [Pubmed]
  18. Determination of Irgarol 1051 in Western Mediterranean sediments. Development and application of supercritical fluid extraction-immunoaffinity chromatography procedure. Carrasco, P.B., Díez, S., Jiménez, J., Marco, M.P., Bayona, J.M. Water Res. (2003) [Pubmed]
  19. Generation of antiserum to Irgarol 1051 and development of a sensitive enzyme immunoassay using a new heterologous hapten derivative. Abuknesha, R.A., Griffith, H.M. Analytical and bioanalytical chemistry. (2005) [Pubmed]
 
WikiGenes - Universities