The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Sea Urchins

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Sea Urchins

 

High impact information on Sea Urchins

  • For example, in sea urchins long-range Ca2+-regulated transport of exocytotic vesicles requires a microtubule-based motor, whereas an actin-based motor is used for short-range transport [4].
  • Homeobox genes have been found in many animal species, including sea urchins, nematodes, frogs, mice and humans [5].
  • Recent identification of a C3-like gene in sea urchins revealed the presence of a complement system in invertebrates [6].
  • Anandamide (arachidonylethanolamide), a brain cannabinoid receptor agonist, reduces sperm fertilizing capacity in sea urchins by inhibiting the acrosome reaction [7].
  • Highly homologous SRCR domains (one, three, or four per polypeptide chain) are found in diverse secreted and cell-surface proteins from humans (e.g., CD5, complement factor I), mice (Ly-1), and sea urchins (speract receptor) [8].
 

Chemical compound and disease context of Sea Urchins

 

Biological context of Sea Urchins

 

Anatomical context of Sea Urchins

  • In sea urchins both lamins A/C and lamin B, as detected with polyclonal antibodies, are lost after the blastula stage, although a different lamin A/C epitope emerges as recognized by a monoclonal antibody [15].
  • Thus, in contrast to the case with C. elegans and sea urchins, canonical Notch signaling is not required in mammals for earliest cell fate specifications or for formation of the three germ layers [16].
  • Previous studies have shown that tektin A, one of three integral filamentous protein components of outer doublet microtubules, is synthesized in sea urchins in an amount correlating to the length of embryonic cilia initially assembled or experimentally regenerated [17].
  • Bindin is a sperm recognition protein that mediates species-specific gamete interactions in sea urchins [18].
  • The purpose of the present study was to determine whether ANP, as egg-derived peptides from sea urchins, can act as a chemoattractant to human spermatozoa [19].
 

Associations of Sea Urchins with chemical compounds

  • The sulfated polysaccharides from sea urchins have simple, well defined repeating structures, and each species represents a particular pattern of sulfate substitution [20].
  • Absolute rates of protein synthesis in sea urchins with specific activity measurements of radioactive leucine and leucyl-tRNA [21].
  • (1) Embryonic cells of sea urchins were made permeable by treating them with glycerol solution for the purpose of allowing penetration of macromolecules into the cell [22].
  • Reaction product was also localized to the periphery of female pronuclei in eggs of all three sea urchins [23].
  • Effect of 3'-deoxyadenosine (cordycepin) on the early development of the sand dollar, Dendraster excentricus [24].
 

Gene context of Sea Urchins

  • Until recently, the microtubule-associated protein, EMAP, was identified only in echinoderms such as sea urchin, starfish and sand dollar [25].
  • NCKX-related genes have also been identified in lower animals including fruit flies, worms and sea urchins [26].
  • Finally, our biochemical analysis shows that the protein associates with rab3 in high molecular weight complexes, suggesting that the exocytotic machinery functions as a multi-protein subunit to mediate regulated secretion in sea urchins [27].
  • As in sea urchins and vertebrates, these domains of AmphiNotch expression overlap with those of several Wnt genes and brachyury [28].
  • Here we describe a new family of eukaryotic HTH proteins, the Pipsqueak (Psq) family, which includes proteins from fungi, sea urchins, nematodes, insects, and vertebrates [29].
 

Analytical, diagnostic and therapeutic context of Sea Urchins

References

  1. Estradiol and endocrine disrupting compounds adversely affect development of sea urchin embryos at environmentally relevant concentrations. Roepke, T.A., Snyder, M.J., Cherr, G.N. Aquat. Toxicol. (2005) [Pubmed]
  2. N2-fixing vibrios isolated from the gastrointestinal tract of sea urchins. Guerinot, M.L., Patriquin, D.G. Can. J. Microbiol. (1981) [Pubmed]
  3. Genotoxicity and teratogenicity of diphenyl and diphenyl ether: a study of sea urchins, yeast, and Salmonella typhimurium. Pagano, G., Esposito, A., Giordano, G.G., Vamvakinos, E., Quinto, I., Bronzetti, G., Bauer, C., Corsi, C., Nieri, R., Ciajolo, A. Teratog., Carcinog. Mutagen. (1983) [Pubmed]
  4. Direct interaction of microtubule- and actin-based transport motors. Huang, J.D., Brady, S.T., Richards, B.W., Stenolen, D., Resau, J.H., Copeland, N.G., Jenkins, N.A. Nature (1999) [Pubmed]
  5. A novel class of plant proteins containing a homeodomain with a closely linked leucine zipper motif. Ruberti, I., Sessa, G., Lucchetti, S., Morelli, G. EMBO J. (1991) [Pubmed]
  6. Ancient origin of the complement lectin pathway revealed by molecular cloning of mannan binding protein-associated serine protease from a urochordate, the Japanese ascidian, Halocynthia roretzi. Ji, X., Azumi, K., Sasaki, M., Nonaka, M. Proc. Natl. Acad. Sci. U.S.A. (1997) [Pubmed]
  7. Anandamide (arachidonylethanolamide), a brain cannabinoid receptor agonist, reduces sperm fertilizing capacity in sea urchins by inhibiting the acrosome reaction. Schuel, H., Goldstein, E., Mechoulam, R., Zimmerman, A.M., Zimmerman, S. Proc. Natl. Acad. Sci. U.S.A. (1994) [Pubmed]
  8. An ancient, highly conserved family of cysteine-rich protein domains revealed by cloning type I and type II murine macrophage scavenger receptors. Freeman, M., Ashkenas, J., Rees, D.J., Kingsley, D.M., Copeland, N.G., Jenkins, N.A., Krieger, M. Proc. Natl. Acad. Sci. U.S.A. (1990) [Pubmed]
  9. Toxicity of cadmium-copper-nickel-zinc mixtures to larval purple sea urchins (Strongylocentrotus purpuratus). Phillips, B.M., Nicely, P.A., Hunt, J.W., Anderson, B.S., Tjeerdema, R.S., Palmer, S.E., Palmer, F.H., Puckett, H.M. Bulletin of environmental contamination and toxicology. (2003) [Pubmed]
  10. Cyclin D and cdk4 are required for normal development beyond the blastula stage in sea urchin embryos. Moore, J.C., Sumerel, J.L., Schnackenberg, B.J., Nichols, J.A., Wikramanayake, A., Wessel, G.M., Marzluff, W.F. Mol. Cell. Biol. (2002) [Pubmed]
  11. Conserved pattern of embryonic actin gene expression in several sea urchins and a sand dollar. Bushman, F.D., Crain, W.R. Dev. Biol. (1983) [Pubmed]
  12. The major yolk protein in sea urchins is a transferrin-like, iron binding protein. Brooks, J.M., Wessel, G.M. Dev. Biol. (2002) [Pubmed]
  13. Females of the sea urchin Strongylocentrotus purpuratus differ in the structures of their egg jelly sulfated fucans. Alves, A.P., Mulloy, B., Moy, G.W., Vacquier, V.D., Mourão, P.A. Glycobiology (1998) [Pubmed]
  14. Temporally different poly(adenosine diphosphate-ribosylation) signals are required for DNA replication and cell division in early embryos of sea urchins. Imschenetzky, M., Montecino, M., Puchi, M. J. Cell. Biochem. (1993) [Pubmed]
  15. Nuclear lamins and peripheral nuclear antigens during fertilization and embryogenesis in mice and sea urchins. Schatten, G., Maul, G.G., Schatten, H., Chaly, N., Simerly, C., Balczon, R., Brown, D.L. Proc. Natl. Acad. Sci. U.S.A. (1985) [Pubmed]
  16. Canonical Notch signaling is dispensable for early cell fate specifications in mammals. Shi, S., Stahl, M., Lu, L., Stanley, P. Mol. Cell. Biol. (2005) [Pubmed]
  17. Transcriptional control of tektin A mRNA correlates with cilia development and length determination during sea urchin embryogenesis. Norrander, J.M., Linck, R.W., Stephens, R.E. Development (1995) [Pubmed]
  18. Evaluation of sequence variation and selection in the bindin locus of the red sea urchin, Strongylocentrotus franciscanus. Debenham, P., Brzezinski, M.A., Foltz, K.R. J. Mol. Evol. (2000) [Pubmed]
  19. Atrial natriuretic peptide: a chemoattractant of human spermatozoa by a guanylate cyclase-dependent pathway. Anderson, R.A., Feathergill, K.A., Rawlins, R.G., Mack, S.R., Zaneveld, L.J. Mol. Reprod. Dev. (1995) [Pubmed]
  20. Sulfated fucans from the egg jellies of the closely related sea urchins Strongylocentrotus droebachiensis and Strongylocentrotus pallidus ensure species-specific fertilization. Vilela-Silva, A.C., Castro, M.O., Valente, A.P., Biermann, C.H., Mourao, P.A. J. Biol. Chem. (2002) [Pubmed]
  21. Absolute rates of protein synthesis in sea urchins with specific activity measurements of radioactive leucine and leucyl-tRNA. Regier, J.C., Kafatos, F.C. Dev. Biol. (1977) [Pubmed]
  22. Specific binding of lectins with the nucleus of the sea urchin embryo and changes in the lectin affinity of the embryonic chromatin during the course of development. Kinoshita, S., Yoshii, K., Tonegawa, Y. Exp. Cell Res. (1988) [Pubmed]
  23. Presence of inositol 1,4,5-trisphosphate receptor, calreticulin, and calsequestrin in eggs of sea urchins and Xenopus laevis. Parys, J.B., McPherson, S.M., Mathews, L., Campbell, K.P., Longo, F.J. Dev. Biol. (1994) [Pubmed]
  24. Effect of 3'-deoxyadenosine (cordycepin) on the early development of the sand dollar, Dendraster excentricus. Spieth, J., Whiteley, A.H. Dev. Biol. (1980) [Pubmed]
  25. Sequence and expression patterns of a human EMAP-related protein-2 (HuEMAP-2). Lepley, D.M., Palange, J.M., Suprenant, K.A. Gene (1999) [Pubmed]
  26. The SLC24 Na+/Ca2+-K+ exchanger family: vision and beyond. Schnetkamp, P.P. Pflugers Arch. (2004) [Pubmed]
  27. Selective expression of a sec1/munc18 member in sea urchin eggs and embryos. Leguia, M., Wessel, G.M. Gene Expr. Patterns (2004) [Pubmed]
  28. Characterization and developmental expression of the amphioxus homolog of Notch (AmphiNotch): evolutionary conservation of multiple expression domains in amphioxus and vertebrates. Holland, L.Z., Rached, L.A., Tamme, R., Holland, N.D., Kortschak, D., Inoko, H., Shiina, T., Burgtorf, C., Lardelli, M. Dev. Biol. (2001) [Pubmed]
  29. The Drosophila Pipsqueak protein defines a new family of helix-turn-helix DNA-binding proteins. Siegmund, T., Lehmann, M. Dev. Genes Evol. (2002) [Pubmed]
  30. Microinjection of the monoclonal anti-tubulin antibody YL1/2 inhibits cleavage of sand dollar eggs. Oka, M.T., Arai, T., Hamaguchi, Y. Cell Struct. Funct. (1990) [Pubmed]
  31. An RGDS peptide-binding receptor, FR-1R, localizes to the basal side of the ectoderm and to primary mesenchyme cells in sand dollar embryos. Katow, H., Sofuku, S. Dev. Growth Differ. (2001) [Pubmed]
  32. Development of serotonin-like and SALMFamide-like immunoreactivity in the nervous system of the sea urchin Psammechinus miliaris. Beer, A.J., Moss, C., Thorndyke, M. Biol. Bull. (2001) [Pubmed]
  33. TEM and molecular simulation studies on the hydroxylapatite structure with Si and Mg impurities. Fernández, M.E., Angeles-Chavez, C., Mondragón-Galicia, G., Rodríguez-Lugo, V. Journal of materials science. Materials in medicine. (2004) [Pubmed]
 
WikiGenes - Universities