The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Priming by grepafloxacin on respiratory burst of human neutrophils: its possible mechanism.

Grepafloxacin is a broad-spectrum fluoroquinolone derivative that has good tissue penetration. We demonstrated that grepafloxacin showed a priming effect on neutrophil respiratory burst, triggered by either a chemotactic factor N-formyl-methionyl-leucyl-phenylalanine (fMLP) or leukotriene B4 (LTB4), but not by the phorbol ester phorbol 12-myristate 13-acetate (PMA). The priming effect of grepafloxacin on fMLP-stimulated superoxide generation by human neutrophils correlated with the penetration of grepafloxacin into cells. Removal of extracellular grepafloxacin did not inhibit the priming effect on fMLP-stimulated superoxide generation. Furthermore, grepafloxacin induced the translocation of p47-phox and p67-phox to the membrane fraction of neutrophils, whereas tyrosine phosphorylation was hardly observed in neutrophils exposed to grepafloxacin. The priming effect of grepafloxacin on superoxide generation from neutrophils was not inhibited by treatment with pertussis toxin, a protein-tyrosine kinase inhibitor (ST-638) or a protein kinase C inhibitor (calphostin C), or chelation of extracellular calcium. Grepafloxacin did not change the fMLP receptor-binding properties. Taken together, these findings suggest that grepafloxacin evokes a priming effect on neutrophil superoxide generation intracellularly through the translocation of p47-phox and even p67-phox protein to the membrane fractions. GTP binding protein, protein-tyrosine phosphorylation and protein kinase C activation are not involved in the priming effect.[1]

References

  1. Priming by grepafloxacin on respiratory burst of human neutrophils: its possible mechanism. Niwa, M., Kanamori, Y., Hotta, K., Matsuno, H., Kozawa, O., Fujimoto, S., Uematsu, T. J. Antimicrob. Chemother. (2002) [Pubmed]
 
WikiGenes - Universities