The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Effects of bile salt flux variations on the expression of hepatic bile salt transporters in vivo in mice.

BACKGROUND/AIMS: Expression of hepatic bile salt transporters is partly regulated by bile salts via activation of nuclear farnesoid X-activated receptor (Fxr). We investigated the physiological relevance of this regulation by evaluating transporter expression in mice experiencing different transhepatic bile salt fluxes. METHODS: Bile salt flux was manipulated by dietary supplementation with taurocholate (0.5% w/w) or cholestyramine (2% w/w) or by disruption of the cholesterol 7alpha-hydroxylase-gene (Cyp7A(-/-) mice) leading to reduced bile salt pool size. Expression of hepatic transporters was assessed (polymerase chain reaction (PCR), immunoblotting, and immunohistochemistry). RESULTS: Biliary bile salt secretion was increased (+350%) or decreased (-50%) after taurocholate or cholestyramine feeding, respectively, but plasma bile salt concentrations and hepatic Fxr expression were not affected. The bile salt uptake system Na(+)-taurocholate co-transporting polypeptide (Ntcp) and organic anion transporting polypeptide-1 (Oatp1) were down-regulated by taurocholate and not affected by cholestyramine feeding. Cyp7A(-/-) mice did not show altered Ntcp or Oatp1 expression. Canalicular bile salt export pump (Bsep) was up-regulated by 65% in taurocholate-fed mice, and slightly down-regulated in Cyp7A(-/-) mice. CONCLUSIONS: Large variations in hepatic bile salt flux have minor effects on expression of murine Ntcp and Bsep in vivo, suggesting that these transporters are abundantly expressed and able to accommodate a wide range of 'physiological' bile salt fluxes.[1]

References

  1. Effects of bile salt flux variations on the expression of hepatic bile salt transporters in vivo in mice. Wolters, H., Elzinga, B.M., Baller, J.F., Boverhof, R., Schwarz, M., Stieger, B., Verkade, H.J., Kuipers, F. J. Hepatol. (2002) [Pubmed]
 
WikiGenes - Universities