The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Phosphorylation of supernatant protein factor enhances its ability to stimulate microsomal squalene monooxygenase.

Supernatant protein factor is a 46-kDa cytosolic protein that stimulates squalene monooxygenase, a downstream enzyme in the cholesterol biosynthetic pathway. The mechanism of stimulation is poorly understood, although supernatant protein factor belongs to a family of lipid- binding proteins that includes Sec14p and alpha-tocopherol transfer protein. Because recombinant human supernatant protein factor purified from Escherichia coli exhibited a relatively weak ability to activate microsomal squalene monooxygenase, we investigated the possibility that cofactors or post-translational modifications were necessary for full activity. Addition of ATP to rat liver cytosol increased supernatant protein factor activity by more than 2-fold and could be prevented by the addition of inhibitors of protein kinases A and C. Incubation of purified recombinant supernatant protein factor with ATP and protein kinases A or C delta similarly increased activity by more than 2-fold. Addition of protein phosphatase 1 gamma, a serine/threonine phosphatase, to rat liver cytosol reduced activity by 50%, suggesting that supernatant protein factor is partially phosphorylated in vivo. To determine whether dietary cholesterol influenced the phosphorylation state, cytosols were prepared from livers of rats fed a high fat diet. Although supernatant protein factor activity was reduced by more than one-half, it could not be restored by the addition of ATP or protein kinase C delta with ATP, suggesting that dietary cholesterol reduced the expression of this protein. Supernatant protein factor thus appears to be regulated both post-translationally through phosphorylation and at the level of expression. Phosphorylation may provide a means for the rapid short term modulation of cholesterol synthesis.[1]

References

  1. Phosphorylation of supernatant protein factor enhances its ability to stimulate microsomal squalene monooxygenase. Singh, D.K., Mokashi, V., Elmore, C.L., Porter, T.D. J. Biol. Chem. (2003) [Pubmed]
 
WikiGenes - Universities