The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Gene expression in Peyronie's disease.

Currently, surgical intervention is the only efficacious treatment for Peyronie's disease (PD), a fibromatosis of the tunica albuginea of the penis. Therapies based on the molecular pathways for this disease could provide alternatives to surgical treatment but only recently has the pathophysiology of the Peyronie's disease plaque been investigated at the molecular level. In this review, we examine the current knowledge of gene expression in the PD plaque and the relationship of PD with other fibrotic conditions such as Dupytren's disease. TGFbeta1, along with other growth factors, pro-fibrotic genes, and collagen, are expressed in fibroblasts and myofibroblasts. Myofibroblasts are normally involved in wound contracture and largely eliminated via apoptosis during the late stages of wound remodeling. In the PD plaque, however, these cells persist and may play an important role in the PD plaque fibrosis. The expression levels of TGFbeta1 and pro- and anti-fibrotic gene products, along with the nitric oxide/reactive oxygen species (NO/ ROS) ratio in the tunica albuginea, appear to be essential for the formation and progression of the PD plaque and effect the expression of multiple genes. This can be assessed with the recently developed DNA-based chip arrays and results with the PD plaque have been encouraging. OSF-1 (osteoblast recruitment), MCP-1 (macrophage recruitment), procollagenase IV (collagenase degradation), and other fibrotic genes have been identified as being possible candidate regulatory genes. Finally, possible therapeutic avenues for gene-based therapy in the treatment of PD are discussed that may eventually reduce the need for surgical intervention.[1]


  1. Gene expression in Peyronie's disease. Gonzalez-Cadavid, N.F., Magee, T.R., Ferrini, M., Qian, A., Vernet, D., Rajfer, J. Int. J. Impot. Res. (2002) [Pubmed]
WikiGenes - Universities