The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Acyl glucuronidation and glucosidation of a new and selective endothelin ET(A) receptor antagonist in human liver microsomes.

Compound A [(+)-(5S,6R,7R)-2-isopropylamino-7-[4-methoxy-2-((2R)-3-methoxy-2-methylpropyl)-5-(3,4-methylenedioxyphenyl) cyclopenteno [1,2-b] pyridine 6-carboxylic acid] is a new and selective endothelin ET(A) receptor antagonist. It underwent significant acyl glucuronidation and acyl glucosidation in human liver microsomes supplemented with UDP-glucuronic acid (UDPGA) and UDP-glucose (UDPG). These two conjugations were observed in a panel of human liver microsomal samples (n = 16) that gave rise to varying activities but with no significant correlation with each other in the native and activator-treated microsomal preparations (r(2) <or= 0.4, p > 0.05). The lack of correlation may be explained by the involvement of multiple UDP-glucuronosyltransferases (UGTs; UGT1A1, 1A3, 1A9, 2B7 and 2B15) in the glucuronidation but essentially solely UGT2B7 in the glucosidation. Both reactions conformed to monophasic Michaelis-Menten kinetics in human liver microsomes. The glucuronidation reaction exhibited apparent K(m) values (mean +/- S.E.) for compound A and UDPGA of 8.4 +/- 0.6 and 605 +/- 35 microM, respectively, whereas the values for the glucosidation reaction were 10.2 +/- 1.5 and 670 +/- 120 microM, respectively. In both pooled human liver microsomes and expressed UGT2B7, UDPG and UDPGA competitively inhibited their counterpart conjugations with K(i) values close to their K(m) values, indicating a comparable affinity of the enzyme toward these two nucleotide sugars. We herein report a drug acyl glucoside formed in human liver microsomes at a considerable turnover rate and provide the evidence for a UGT isoform (UGT2B7) capable of transferring both glucuronic acid and glucose from UDPGA and UDPG to an aglycone.[1]

References

  1. Acyl glucuronidation and glucosidation of a new and selective endothelin ET(A) receptor antagonist in human liver microsomes. Tang, C., Hochman, J.H., Ma, B., Subramanian, R., Vyas, K.P. Drug Metab. Dispos. (2003) [Pubmed]
 
WikiGenes - Universities