The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Contribution of Na+ -Ca2+ exchanger to pinacidil-induced relaxation in the rat mesenteric artery.

1 Pinacidil relaxes blood vessels through opening the K(ATP) channels with a resultant membrane hyperpolarization and inhibition of Ca(2+) influx. The aim of this study was to examine the mechanisms thereby pinacidil induces K(+) channel-independent relaxation in isolated endothelium-denuded rat mesenteric artery. 2 Pinacidil-induced relaxation was inhibited by glibenclamide (1-10 micro M) in phenylephrine-preconstricted rings, but was unaffected by glibenclamide after inhibition of K(+) channels and VGCCs. Pinacidil-induced K(+) channel-independent relaxation remained unchanged after treatment with cyclopiazonic acid (10 micro M), thapsigargin (1 micro M), ouabain (100 micro M), propranolol (10 micro M), Rp-cAMPS triethylamine (30 micro M), L-NNA (100 micro M), or ODQ (10 micro M). 3 Pinacidil induced more relaxant effect in the presence of nifedipine than in the presence of 60 mM K(+) plus nifedipine. Pretreatment with Na(+)-Ca(2+) exchanger inhibitors, nickel (30-300 micro M) or benzamil (20 micro M) attenuated pinacidil-induced relaxation in normal or in nifedipine-containing solution. Pinacidil (1 micro M) produced less relaxant effect with decreasing extracellular Na(+) concentration. Na(+)-free condition abolished the inhibitory effect of benzamil. Both nickel and benzamil inhibited pinacidil-induced relaxation in the presence of glibenclamide (10 micro M). Nickel (300 micro M) did not affect the relaxant response to sodium nitroprusside. 4 Pinacidil relaxed the rings preconstricted by active phorbol and U46619 with similar potency. 5 The present results indicate that stimulation of the forward mode Na(+)-Ca(2+) exchange pathway is in part responsible for pinacidil-induced K(+) channel-independent vasorelaxation. Pinacidil also induces K(+) channel-dependent but VGCCs-independent relaxation. The PKC-mediated cellular pathway may be a target site for pinacidil only in higher concentrations.[1]

References

  1. Contribution of Na+ -Ca2+ exchanger to pinacidil-induced relaxation in the rat mesenteric artery. Tsang, S.Y., Yao, X., Wong, C.M., Au, C.L., Chen, Z.Y., Huang, Y. Br. J. Pharmacol. (2003) [Pubmed]
 
WikiGenes - Universities