Triple decoding of hepatitis C virus RNA by programmed translational frameshifting.
Ribosomes can be programmed to shift from one reading frame to another during translation. Hepatitis C virus (HCV) uses such a mechanism to produce F protein from the -2/+1 reading frame. We now report that the HCV frameshift signal can mediate the synthesis of the core protein of the zero frame, the F protein of the -2/+1 frame, and a 1.5-kDa protein of the -1/+2 frame. This triple decoding function does not require sequences flanking the frameshift signal and is apparently independent of membranes and the synthesis of the HCV polyprotein. Two consensus -1 frameshift sequences in the HCV type 1 frameshift signal facilitate ribosomal frameshifts into both overlapping reading frames. A sequence which is located immediately downstream of the frameshift signal and has the potential to form a double stem-loop structure can significantly enhance translational frameshifting in the presence of the peptidyl-transferase inhibitor puromycin. Based on these results, a model is proposed to explain the triple decoding activities of the HCV ribosomal frameshift signal.[1]References
- Triple decoding of hepatitis C virus RNA by programmed translational frameshifting. Choi, J., Xu, Z., Ou, J.H. Mol. Cell. Biol. (2003) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg