The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Enhanced capacitative calcium entry and TRPC channel gene expression in human LES smooth muscle.

Transient receptor potential channel (TRPC) genes encode Ca(2+)-permeable channels mediating capacitative Ca(2+) entry (CCE), which maintains intracellular Ca(2+) stores. We compared TRPC gene expression and CCE in human esophageal body (EB) and lower esophageal sphincter (LES), because these smooth muscles have distinct contractile functions that are likely associated with different Ca(2+) regulatory mechanisms. Circular layer smooth muscle cells were grown in primary culture. Transcriptional expression of TRPC genes was compared by semiquantitative RT-PCR. CCE was measured by fura 2 Ca(2+) fluorescence after blockade of sarcoplasmic reticulum Ca(2+)-ATPase with thapsigargin. mRNA for TRPC1, TRPC3, TRPC4, TRPC5, and TRPC6 was identified in EB and LES. TRPC3 and TRPC4 were more abundant in LES than EB. Basal concentration of free intracellular Ca(2+) ([Ca(2+)](i)) was similar in cells from LES (138 +/- 8 nmol/l) and EB (110 +/- 6 nmol/l) and increased with ACh (10 micromol/l; 650 +/- 28 and 590 +/- 21 nmol/l, respectively). With zero Ca(2+) in bath, thapsigargin (2 micromol/l) increased [Ca(2+)](i) more in LES (550 +/- 22 nmol/l) than EB (250 +/- 15 nmol/l, P < 0.001). Subsequent external application of 1 mmol/l Ca(2+) increased [Ca(2+)](i) more in LES (585 +/- 35 nmol/l) than EB (295 +/- 21 nmol/l, P < 0.001), indicating enhanced CCE in LES. This demonstrates CCE and TRPC transcriptional expression in human esophageal smooth muscle. In LES cells, enhanced CCE and expression of TRPC3 and TRPC4 may contribute to the physiological characteristics that distinguish LES from EB.[1]

References

  1. Enhanced capacitative calcium entry and TRPC channel gene expression in human LES smooth muscle. Wang, J., Laurier, L.G., Sims, S.M., Preiksaitis, H.G. Am. J. Physiol. Gastrointest. Liver Physiol. (2003) [Pubmed]
 
WikiGenes - Universities