The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

20-hydroxyeicosatetraenoic acid (20-HETE) activates mouse TRPC6 channels expressed in HEK293 cells.

In the present study, we show that the eicosanoid compound, 20-hydroxyeicosatetraenoic acid (20-HETE), an important arachidonic acid metabolite, activates mouse TRPC6 in a stable, overexpressing HEK293 cell line, Hek-t6.11. Application of 20-HETE rapidly induced an inward, non-selective current in whole-cell recordings, which was inhibited by N-methyl-d-glucamine, 1.8 mm Ca2+, and 100 microM Gd3+ but remained unaffected by flufenamate and indomethacin. The current-voltage relationship obtained at low concentrations of 20-HETE (1-10 microM) demonstrated slight inward rectification, whereas the highest concentration of 20-HETE tested (30 microM) showed outward rectification, as shown previously for these channels using 100 microM 1-oleoyl-2-acetyl-sn-glycerol. Dose-response curves indicate that 20-HETE activated TRPC6 channels with an EC50 = 0.8 microM. Single channel analysis using inside-out patches revealed that 20-HETE increased open probability of mouse TRPC6 channels approximately 3-fold, and this was in a membrane-delimited fashion. Interestingly, 20-HETE did not provoke changes in intracellular Ca2+ concentrations. Thus, we have identified an arachidonic acid metabolite, 20-HETE, as a novel activator for a TRP family member, TRPC6.[1]

References

  1. 20-hydroxyeicosatetraenoic acid (20-HETE) activates mouse TRPC6 channels expressed in HEK293 cells. Basora, N., Boulay, G., Bilodeau, L., Rousseau, E., Payet, M.D. J. Biol. Chem. (2003) [Pubmed]
 
WikiGenes - Universities