The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Whole-cell chloride conductances in cultured brushed human nasal epithelial cells.

Human airway epithelial cells were obtained by nasal brushing, thus avoiding the use of proteolytic enzymes for cell isolation. Whole-cell Cl- conductances were studied in these cells by means of the patch-clamp technique. During whole-cell recordings, cell swelling activated a Cl- conductance that was blocked by indanyloxyacetic acid (48 +/- 10% inhibition at 50 microM). The swelling-induced current outwardly rectified and showed inactivation at depolarizing voltages (> or = +60 mV) and activation at hyperpolarizing voltages (< or = -30 mV). The voltage sensitivity of current activation was approximately twice that of inactivation. Another Cl- current with different kinetics was observed when nonswollen airway cells were stimulated with ionomycin (2 microM) in the presence of 1 mM Ca2+. The Ca(2+)-induced current exhibited activation during depolarizing voltage steps (> or = +40 mV) and inactivation during hyperpolarizing voltage steps (< or = -40 mV). In contrast to the swelling-induced current, the activation of Ca(2+)-induced current was less sensitive to voltage compared with its inactivation. Tail current analysis suggested that Cl- channels having a linear current-voltage relation mediate the response to Ca2+. This study indicates that brushed human nasal epithelial cells possess Cl- conductances that are regulated by cell swelling and Ca2+ and that they represent a useful in vitro model for studying ion transport in epithelia.[1]

References

  1. Whole-cell chloride conductances in cultured brushed human nasal epithelial cells. Grygorczyk, R., Bridges, M.A. Can. J. Physiol. Pharmacol. (1992) [Pubmed]
 
WikiGenes - Universities