The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Identification of a novel sugar transporter homologue strongly expressed in maturing stem vascular tissues of sugarcane by expressed sequence tag and microarray analysis.

The ability of sugarcane to accumulate sucrose provides an experimental system for the study of gene expression determining carbohydrate partitioning and metabolism. A sequence survey of 7242 ESTs derived from the sucrose-accumulating, maturing stem revealed that transcripts for carbohydrate metabolism gene sequences (CMGs) are relatively rare in this tissue. However, within the CMG group, putative sugar transporter ESTs form one of the most abundant classes observed. A combination of EST analysis and microarray and northern hybridization revealed that one of the putative sugar transporter types, designated PST type 2a, was the most abundant and most strongly differentially expressed CMG in maturing stem tissue. PST type 2a is homologous to members of the major facilitator super-family of transporters, possessing 12 predicted transmembrane domains and a sugar transport conserved domain, interrupted by a large cytoplasmic loop. Its transcript was localized to phloem companion cells and associated parenchyma in maturing stem, suggesting a role in sugar translocation rather than storage. In addition, other categories of CMGs show evidence of coordinated expression, such as enzymes involved in sucrose synthesis and cleavage, and a majority of enzymes involved in glycolysis and the pentose phosphate pathway. This study demonstrates the utility of genomic approaches using large-scale EST acquisition and microarray hybridization techniques for studies of the developmental regulation of metabolic enzymes and potential transporters in sugarcane.[1]

References

 
WikiGenes - Universities