The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Saccharum

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Saccharum

  • The cry1Ac7 gene of Bacillus thuringiensis strain 234, showing activity against the sugarcane borer Eldana saccharina, was cloned under the control of the tac promoter [1].
  • It colonizes the roots, the stems, and predominantly the leaves of sugarcane (Saccharum spp.), while Herbaspirillum seropedicae colonizes in large numbers many different species of the Gramineae [2].
  • Cross-hybridization divided the viruses into three groups: those closely related to maize streak virus (MSVs), and separate groups comprising a Panicum sp. virus (PanSV) and two sugarcane viruses (SSVs) [3].
  • PCR with BOX and ERIC primers was used to analyze DNA of Xanthomonas albilineans and other bacteria associated with sugarcane [4].
  • Axillary bud explants from 6-month-old sugarcane cultivars Co92061 and Co671 were co-cultivated with Agrobacterium strains LBA4404 and EHA105 that harboured a binary vector pGA492 carrying neomycin phosphotransferase II, phosphinothricin acetyltransferase (bar) and an intron containing beta-glucuronidase (gus-intron) genes in the T-DNA region [5].
 

High impact information on Saccharum

 

Chemical compound and disease context of Saccharum

 

Biological context of Saccharum

 

Anatomical context of Saccharum

  • A low molecular mass (18 kD) phosphoprotein (pp18) was characterized and purified from cultured sugarcane (Saccharum officinarum L.) cell line H50-7209 [10].
  • Human bone marrow cells (TF-1), which require GM-CSF for cell division, proliferated when growth media was supplemented with transgenic sugarcane extracts [20].
  • However, smut teliospores seem to be able to change the pattern of glycoprotein production by sugarcane, thereby promoting the synthesis of different glycoproteins that activate polarization after binding to their cell wall ligand [21].
 

Associations of Saccharum with chemical compounds

  • The changes in these properties during development of sugarcane stalk tissue may be a way for parenchyma cells to develop a capacity for expansive growth and still serve as a strong sink for storing high concentrations of sucrose [22].
  • Glucose transporter cDNAs from sugarcane [23].
  • The method was applied to analysis of glucose, fructose, and sucrose in soft drinks, isotonic beverages, fruit juice, and sugarcane spirits [24].
  • Isolation of a full-length cDNA encoding polyphenol oxidase from sugarcane, a C4 grass [25].
  • Structure and expression of a sugarcane gene encoding a housekeeping phosphoenolpyruvate carboxylase [26].
 

Gene context of Saccharum

  • Between sugarcane and maize at the rps16-trnQ (UUG) region, however, a length polymorphism was identified [27].
  • Production of biologically active GM-CSF in sugarcane: a secure biofactory [20].
  • The striatal lesions induced by 3-NPA and AC in poisoned rats were in accordance with the bilateral lenticular hypodensity found by CT scanning in patients of mildewed sugarcane poisoning with delayed dystonia [28].
  • Expression constructs differed in use of the maize polyubiquitin 1, Mubi-1, or the sugarcane polyubiquitin 9, SCubi9, promoters; presence or absence of a C-terminal HDEL tag for ER retention; and presence or absence of a 6X Histidine tag for metal ion affinity purification [20].
  • A probably complete plant uncoupling protein gene family is described and the expression profiles of this family compared with the multigene family of alternative oxidases in Arabidopsis thaliana and sugarcane (Saccharum sp.) employed as dicot and monocot models, respectively [29].
 

Analytical, diagnostic and therapeutic context of Saccharum

References

  1. Biocontrol of the sugarcane borer Eldana saccharina by expression of the Bacillus thuringiensis cry1Ac7 and Serratia marcescens chiA genes in sugarcane-associated bacteria. Downing, K.J., Leslie, G., Thomson, J.A. Appl. Environ. Microbiol. (2000) [Pubmed]
  2. Emended description of Herbaspirillum; inclusion of [Pseudomonas] rubrisubalbicans, a milk plant pathogen, as Herbaspirillum rubrisubalbicans comb. nov.; and classification of a group of clinical isolates (EF group 1) as Herbaspirillum species 3. Baldani, J.I., Pot, B., Kirchhof, G., Falsen, E., Baldani, V.L., Olivares, F.L., Hoste, B., Kersters, K., Hartmann, A., Gillis, M., Döbereiner, J. Int. J. Syst. Bacteriol. (1996) [Pubmed]
  3. Genome typing of southern African subgroup 1 geminiviruses. Hughes, F.L., Rybicki, E.P., von Wechmar, M.B. J. Gen. Virol. (1992) [Pubmed]
  4. Xanthomonas albilineans diversity and identification based on rep-PCR fingerprints. Lopes, S.A., Damann, K.E., Grelen, L.B. Curr. Microbiol. (2001) [Pubmed]
  5. Agrobacterium-mediated genetic transformation and development of herbicide-resistant sugarcane (Saccharum species hybrids) using axillary buds. Manickavasagam, M., Ganapathi, A., Anbazhagan, V.R., Sudhakar, B., Selvaraj, N., Vasudevan, A., Kasthurirengan, S. Plant Cell Rep. (2004) [Pubmed]
  6. Use of the deuterated-retinol-dilution technique to monitor the vitamin A status of Nicaraguan schoolchildren 1 y after initiation of the Nicaraguan national program of sugar fortification with vitamin A. Ribaya-Mercado, J.D., Solomons, N.W., Medrano, Y., Bulux, J., Dolnikowski, G.G., Russell, R.M., Wallace, C.B. Am. J. Clin. Nutr. (2004) [Pubmed]
  7. RNA expression profiles and data mining of sugarcane response to low temperature. Nogueira, F.T., De Rosa, V.E., Menossi, M., Ulian, E.C., Arruda, P. Plant Physiol. (2003) [Pubmed]
  8. Toward integration of comparative genetic, physical, diversity, and cytomolecular maps for grasses and grains, using the sorghum genome as a foundation. Draye, X., Lin, Y.R., Qian, X.Y., Bowers, J.E., Burow, G.B., Morrell, P.L., Peterson, D.G., Presting, G.G., Ren, S.X., Wing, R.A., Paterson, A.H. Plant Physiol. (2001) [Pubmed]
  9. Delayed dystonia with striatal CT lucencies induced by a mycotoxin (3-nitropropionic acid). He, F., Zhang, S., Qian, F., Zhang, C. Neurology (1995) [Pubmed]
  10. Characterization of a low molecular mass autophosphorylating protein in cultured sugarcane cells and its identification as a nucleoside diphosphate kinase. Moisyadi, S., Dharmasiri, S., Harrington, H.M., Lukas, T.J. Plant Physiol. (1994) [Pubmed]
  11. Lipopeptide surfactant production by Bacillus subtilis grown on low-cost raw materials. Reis, F.A., Sérvulo, E.F., De França, F.P. Appl. Biochem. Biotechnol. (2004) [Pubmed]
  12. Antagonism of Gluconacetobacter diazotrophicus (a sugarcane endosymbiont) against Xanthomonas albilineans (pathogen) studied in alginate-immobilized sugarcane stalk tissues. Blanco, Y., Blanch, M., Piñón, D., Legaz, M.E., Vicente, C. J. Biosci. Bioeng. (2005) [Pubmed]
  13. Acute and environmental toxicity studies with hexazinone. Kennedy, G.L. Fundamental and applied toxicology : official journal of the Society of Toxicology. (1984) [Pubmed]
  14. Identification of xanthans isolated from sugarcane juices obtained from scalded plants infected by Xanthomonas albilineans. Fontaniella, B., Rodríguez, C.W., Piñón, D., Vicente, C., Legaz, M.E. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. (2002) [Pubmed]
  15. A genetic linkage map of Saccharum spontaneum L. 'SES 208'. al-Janabi, S.M., Honeycutt, R.J., McClelland, M., Sobral, B.W. Genetics (1993) [Pubmed]
  16. Identification of a novel sugar transporter homologue strongly expressed in maturing stem vascular tissues of sugarcane by expressed sequence tag and microarray analysis. Casu, R.E., Grof, C.P., Rae, A.L., McIntyre, C.L., Dimmock, C.M., Manners, J.M. Plant Mol. Biol. (2003) [Pubmed]
  17. Sucrose partitioning between vascular bundles and storage parenchyma in the sugarcane stem: a potential role for the ShSUT1 sucrose transporter. Rae, A.L., Perroux, J.M., Grof, C.P. Planta (2005) [Pubmed]
  18. Aluminium-responsive genes in sugarcane: identification and analysis of expression under oxidative stress. Watt, D.A. J. Exp. Bot. (2003) [Pubmed]
  19. Quantitative trait loci identified for sugar related traits in a sugarcane (Saccharum spp.) cultivar x Saccharum officinarum population. Aitken, K.S., Jackson, P.A., McIntyre, C.L. Theor. Appl. Genet. (2006) [Pubmed]
  20. Production of biologically active GM-CSF in sugarcane: a secure biofactory. Wang, M.L., Goldstein, C., Su, W., Moore, P.H., Albert, H.H. Transgenic Res. (2005) [Pubmed]
  21. Glycoproteins from sugarcane plants regulate cell polarity of Ustilago scitaminea teliospores. Millanes, A.M., Fontaniella, B., Legaz, M.E., Vicente, C. J. Plant Physiol. (2005) [Pubmed]
  22. Developmental changes in cell and tissue water relations parameters in storage parenchyma of sugarcane. Moore, P.H., Cosgrove, D.J. Plant Physiol. (1991) [Pubmed]
  23. Glucose transporter cDNAs from sugarcane. Bugos, R.C., Thom, M. Plant Physiol. (1993) [Pubmed]
  24. Determination of mono- and disaccharides by capillary electrophoresis with contactless conductivity detection. Carvalho, A.Z., da Silva, J.A., do Lago, C.L. Electrophoresis (2003) [Pubmed]
  25. Isolation of a full-length cDNA encoding polyphenol oxidase from sugarcane, a C4 grass. Bucheli, C.S., Dry, I.B., Robinson, S.P. Plant Mol. Biol. (1996) [Pubmed]
  26. Structure and expression of a sugarcane gene encoding a housekeeping phosphoenolpyruvate carboxylase. Albert, H.A., Martin, T., Sun, S.S. Plant Mol. Biol. (1992) [Pubmed]
  27. Complete nucleotide sequence of the sugarcane (Saccharum officinarum) chloroplast genome: a comparative analysis of four monocot chloroplast genomes. Asano, T., Tsudzuki, T., Takahashi, S., Shimada, H., Kadowaki, K. DNA Res. (2004) [Pubmed]
  28. Consistent striatal damage in rats induced by 3-nitropropionic acid and cultures of arthrinium fungus. Fu, Y., He, F., Zhang, S., Jiao, X. Neurotoxicology and teratology. (1995) [Pubmed]
  29. The plant energy-dissipating mitochondrial systems: depicting the genomic structure and the expression profiles of the gene families of uncoupling protein and alternative oxidase in monocots and dicots. Borecky, J., Nogueira, F.T., de Oliveira, K.A., Maia, I.G., Vercesi, A.E., Arruda, P. J. Exp. Bot. (2006) [Pubmed]
  30. Comparison of the effects of D-003, a mixture of high-molecular-weight aliphatic acids from sugarcane wax, and pravastatin on bones and osteoclast apoptosis of ovariectomized rats. Mendoza, S., Noa, M., Mas, R., Mendoza, N. Drugs under experimental and clinical research. (2005) [Pubmed]
  31. Removal of phenanthrene from soil by co-cultures of bacteria and fungi pregrown on sugarcane bagasse pith. Chávez-Gómez, B., Quintero, R., Esparza-García, F., Mesta-Howard, A.M., Zavala Díaz de la Serna, F.J., Hernández-Rodríguez, C.H., Gillén, T., Poggi-Varaldo, H.M., Barrera-Cortés, J., Rodríguez-Vázquez, R. Bioresour. Technol. (2003) [Pubmed]
 
WikiGenes - Universities