The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

The origin of human chromosome 1 and its homologs in placental mammals.

Developing ordered gene maps from multiple mammalian species coupled with chromosome-painting data provide a powerful resource for resolving the evolutionary history of chromosomes and whole genomes. In this work, we recapitulate the evolutionary history of human chromosome 1 and its homologs in placental mammals, putatively the largest physical unit in the ancestral placental genome. Precise definition of translocation exchange breakpoints in human, carnivore, cetartiodactyl, and rodent-ordered gene maps demonstrate that chromosome breakpoints, previously considered as equivalent, actually represent distinct chromosome positions and exchange events. Multidirectional chromosome painting, using probes from homologs to chromosome 1 in seven mammal species from six orders of placental mammals, confirm the gene-mapping results and indicate that the multiple human chromosome 1 homologs in these species are derived from independent fissions of a single ancestral chromosome. Chromosome painting using human chromosome 1 probes identifies a single human chromosome 1 homolog in phylogenetically distant taxa, the two-toed sloth, cetaceans, and higher primates. The diverse phylogenetic occurrence of a single Hsa1 synteny among the major clades of placental mammals suggests that human chromosome 1 represents an intact ancestral chromosome, which was variously fissioned in the majority of placental species. We find that the number of human chromosome 1 fissions in a specific lineage reflects its general rate of genomic evolution. Further, historic chromosome exchange appears to have been disproportionately clustered in two breakpoint hotspots on the long arm.[1]

References

  1. The origin of human chromosome 1 and its homologs in placental mammals. Murphy, W.J., Frönicke, L., O'Brien, S.J., Stanyon, R. Genome Res. (2003) [Pubmed]
 
WikiGenes - Universities