The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Small-conductance calcium-activated K+ channels are expressed in pancreatic islets and regulate glucose responses.

Glucose-stimulated insulin secretion is associated with transients of intracellular Ca(2+) concentration [Ca(2+)](i) in the pancreatic beta-cell. We identified the expression and function of specific small-conductance Ca(2+)-activated K(+) (SK) channel genes in insulin-secreting cells. The presence of mRNA for SK1, -2, -3, and -4 (intermediate-conductance Ca(2+)-activated K(+) 1 [IK1]) channels was demonstrated by RT-PCR in rodent islets and insulinoma cells. SK2 and -3 proteins in mouse islets were detected by immunoblot and immunocytochemistry. In the tTA-SK3 tet-off mouse, a normal amount of SK3 protein was present in islets, but it became undetectable after exposure to doxycycline (DOX), which inhibits the transcription of the tTA-SK3 gene. The SK/IK channel-blockers apamin, dequalinium, and charybdotoxin caused increases in average [Ca(2+)](i) levels and in frequency of [Ca(2+)](i) oscillations in wild-type mouse islets. In SK3-tTA tet-off mice, the addition of apamin with glucose and tetraethylammonium (TEA) caused a similar elevation in [Ca(2+)](i), which was greatly diminished after DOX suppression of SK3 expression. We conclude that SK1, -2, -3, and IK1 (SK4) are expressed in islet cells and insulin-secreting cells and are able to influence glucose-induced calcium responses, thereby regulating insulin secretion.[1]


  1. Small-conductance calcium-activated K+ channels are expressed in pancreatic islets and regulate glucose responses. Tamarina, N.A., Wang, Y., Mariotto, L., Kuznetsov, A., Bond, C., Adelman, J., Philipson, L.H. Diabetes (2003) [Pubmed]
WikiGenes - Universities