The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

The anti-inflammatory effect of honokiol on neutrophils: mechanisms in the inhibition of reactive oxygen species production.

Reactive oxygen species produced by neutrophils contribute to the pathogenesis of focal cerebral ischemia/reperfusion injury and signal the inflammatory response. We have previously shown that honokiol, an active principle extracted from Magnolia officinalis, has a protective effect against focal cerebral ischemia/reperfusion injury in rats that paralleled a reduction in reactive oxygen species production by neutrophils. To elucidate the underlying mechanism(s) of the antioxidative effect of honokiol, peripheral neutrophils isolated from rats were activated with phorbol-12-myristate-13-acetate (PMA) or N-formyl-methionyl-leucyl-phenylalanine (fMLP) in the presence or absence of honokiol. In this study, we found that honokiol inhibited PMA- or fMLP-induced reactive oxygen species production by neutrophils by three distinct mechanisms: (1) honokiol diminished the activity of assembled-NADPH oxidase, a major reactive oxygen species producing enzyme in neutrophils by 40% without interfering with its protein kinase C (PKC)-dependent assembly; (2) two other important enzymes for reactive oxygen species generation in neutrophils, i.e., myeloperoxidase and cyclooxygenase, were also inhibited by honokiol by 20% and 70%, respectively; and (3) honokiol enhanced glutathione (GSH) peroxidase activity by 30%, an enzyme that triggers the metabolism of hydrogen peroxide (H2O2). These data suggested that honokiol, acting as a potent reactive oxygen species inhibitor/scavenger, could achieve its focal cerebral ischemia/reperfusion injury protective effect by modulating enzyme systems related to reactive oxygen species production or metabolism, including NADPH oxidase, myeloperoxidase, cyclooxygenase, and GSH peroxidase in neutrophils.[1]

References

  1. The anti-inflammatory effect of honokiol on neutrophils: mechanisms in the inhibition of reactive oxygen species production. Liou, K.T., Shen, Y.C., Chen, C.F., Tsao, C.M., Tsai, S.K. Eur. J. Pharmacol. (2003) [Pubmed]
 
WikiGenes - Universities