The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Identification and characterisation of a new human glucose-6-phosphatase isoform.

The liver endoplasmic reticulum glucose-6-phosphatase catalytic subunit (G6PC1) catalyses glucose 6-phosphate hydrolysis during gluconeogenesis and glycogenolysis. The highest glucose-6-phosphatase activities are found in the liver and the kidney; there have been many reports of glucose 6-phosphate hydrolysis in other tissues. We cloned a new G6Pase isoform (G6PC3) from human brain encoded by a six-exon gene (chromosome 17q21). G6PC3 protein was able to hydrolyse glucose 6-phosphate in transfected Chinese hamster ovary cells. The optimal pH for glucose 6-phosphate hydrolysis was lower and the K(m) higher relative to G6PC1. G6PC3 preferentially hydrolyzed other substrates including pNPP and 2-deoxy-glucose-6-phosphate compared to the liver enzyme.[1]

References

  1. Identification and characterisation of a new human glucose-6-phosphatase isoform. Guionie, O., Clottes, E., Stafford, K., Burchell, A. FEBS Lett. (2003) [Pubmed]
 
WikiGenes - Universities