Cpc2/RACK1 is a ribosome-associated protein that promotes efficient translation in Schizosaccharomyces pombe.
Cpc2/RACK1 is a highly conserved WD domain protein found in all eucaryotes. Cpc2/RACK1 functions on mammalian signal transduction pathways most notably as an adaptor protein for the betaII protein kinase C isozyme. In single cell eucaryotes, Cpc2/RACK1 regulates growth, differentiation, and entry into G0 stationary phase. The exact biochemical function of Cpc2/RACK1 is unknown. Here, we provide evidence that Cpc2 is associated with the ribosome. Using immunoaffinity purification, we isolated ribosomal proteins in association with Cpc2/RACK1. Polysome and ribosomal subunit analysis using velocity gradient centrifugation of cell lysates demonstrated that Cpc2 co-sediments with the 40 S ribosomal subunit and with polysomes. Conditions known to disrupt ribosome structure alter sedimentation of the ribosome and of Cpc2/RACK1 coordinately. Loss of cpc2 does not dramatically alter the rate of cellular protein synthesis but causes a decrease in the steady state level of numerous proteins, some of which regulate methionine metabolism. Whereas real time PCR analysis demonstrated that transcriptional mechanisms are responsible for down-regulation of some of these proteins, one protein, ribosomal protein L25, is probably regulated at the level of translation.[1]References
- Cpc2/RACK1 is a ribosome-associated protein that promotes efficient translation in Schizosaccharomyces pombe. Shor, B., Calaycay, J., Rushbrook, J., McLeod, M. J. Biol. Chem. (2003) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg