The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

In vivo activation of kainate receptors induces dephosphorylation of the heavy neurofilament subunit.

Injection of kainic acid (KA) into the rat hippocampus reduced the phosphorylation-related immunoreactivity of the heavy subunit of neurofilament proteins (NF-H). The effect was demonstrated quantitatively with a dot-immunobinding assay and qualitatively by immunoblotting with monoclonal antibodies against phosphorylation-dependent and nonphosphorylation-related epitopes of NF-H. The KA-induced reduction affected 50% of the phosphorylated NF-H in half of the hippocampus after 48 h. At the same time, the nonphosphorylation-related NF-H immunoreactivity increased as revealed by immunoblotting, indicating a shift from phosphorylated to nonphosphorylated NF-H. The effects on NF-H preceded a decrease in content of the neuron-specific enolase, a soluble neuronal cytoplasmic protein. No alterations of the light subunit of neurofilament proteins occurred, suggesting that KA has a preferential effect on NF-H phosphorylation. N-Methyl-D-aspartate administered similarly did not lead to a rapid dephosphorylation of NF-H. We propose that kainate receptor-mediated dephosphorylation in NF-H is involved in the signal transduction of excitatory amino acids with consequences for neuronal functions dependent on intermediary filament phosphorylation.[1]


  1. In vivo activation of kainate receptors induces dephosphorylation of the heavy neurofilament subunit. Wang, S., Hamberger, A., Ding, M., Haglid, K.G. J. Neurochem. (1992) [Pubmed]
WikiGenes - Universities