The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Characterization of the Lactococcus lactis lactose operon promoter: contribution of flanking sequences and LacR repressor to promoter activity.

We determined the location, activity, and regulation of the promoter of the Lactococcus lactis 8-kb lactose operon (lacABCDFEGX), which encodes the enzymes of the lactose phosphotransferase system and the tagatose 6-phosphate pathway. The lac promoter sequence corresponds closely to the consensus promoter described for gram-positive bacteria and is located in a back-to-back configuration with the promoter of the divergently transcribed lacR gene, which encodes the LacR repressor. The transcription start sites used under induced (lactose) and noninduced (glucose) conditions were determined. The minimal promoter region that could be isolated on a single restriction fragment included sequences ranging from -75 to +42. The effect of the presence of flanking sequences and the lacR gene on promoter activity and regulation was studied in Escherichia coli and L. lactis strains by using transcriptional fusions with promoterless chloramphenicol acetyltransferase reporter genes. The results showed that transcriptional regulation of the lac operon is mediated by the interaction between the LacR repressor, the lac promoter, and sequences in the noncoding region between the lacR and lacA genes. Sequences flanking the minimal promoter region appeared to enhance lac promoter activity much more in L. lactis (5- to 38-fold) than in E. coli (1.3- to 5-fold).[1]

References

 
WikiGenes - Universities