The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

Tagatose     (3S,4S,5R)-1,3,4,5,6- pentahydroxyhexan-2-one

Synonyms: Naturlose, D-Tagatose, D-Tag, D(-)-Tagatose, Tagatose, D-, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of D-Tagatose

 

High impact information on D-Tagatose

  • Because we could not attribute fructose cytoprotection to metabolic effects, alterations in the expression of bcl-2, or metal chelation, we next determined if the poorly metabolized ketohexoses, tagatose and sorbose, also inhibited apoptosis; unexpectedly, both ketohexoses inhibited apoptosis [5].
  • After the addition of 5 mM fructose, xylitol, tagatose, or D-xylulose, PRPP increased from a basal value of 6 +/- 1 nmol/g of cells to, respectively, 68 +/- 11, 42 +/- 11, 67 +/- 22, and 530 +/- 50 nmol/g of cells (means +/- SEM of 3-9 experiments) [6].
  • In addition, the study shows that certain sugars such as glucose or tagatose, when added to redox-inactive glassy matrices, can be used as a source of thermal electrons that can be harvested by suitable redox active proteins, raising the prospect of using common sugars as an electron source in solid state thermal fuel cells [7].
  • The tagatose 6-phosphate pathway gene cluster (lacABCD) encoding galactose-6-phosphate isomerase, tagatose-6-phosphate kinase, and tagatose-1,6-diphosphate aldolase of Lactococcus lactis subsp. lactis MG1820 has been characterized by cloning, nucleotide sequence analysis, and enzyme assays [1].
  • Transcription studies showed that the four tagatose 6-phosphate pathway genes are the first genes of the lactose-inducible lactose-phosphotransferase operon consisting of the lacABCDFEGX genes [1].
 

Chemical compound and disease context of D-Tagatose

 

Biological context of D-Tagatose

 

Anatomical context of D-Tagatose

  • When incubated with tagatose, the hepatocytes accumulated tagatose 1-phosphate, a presumed inhibitor of phosphorylase a [13].
  • Under the optimum conditions, the immobilized cell reactor with Mn2+ produced an average of 59 g/L tagatose with a productivity of 2.9 g/L.h and a conversion yield of 19.5% for the first 20 days [14].
 

Associations of D-Tagatose with other chemical compounds

  • Further, the crystal structure of ECAI forms a basis for identifying molecular determinants responsible for isomerization of arabinose to ribulose in vivo and galactose to tagatose in vitro [2].
  • Mutation of the lacA gene of the tagatose pathway caused impaired growth in lactose and galactose, suggesting that galactose can only be efficiently utilized when both the Leloir and tagatose pathways are functional [15].
  • There was great phenotypic heterogeneity (13 different biotypes) based on the acidification of saccharose, tagatose, mannitol, and cyclodextrin and the presence of the enzymes pyroglutamic acid arylamidase and N-acetyl-beta-glucosaminidase [16].
  • One hundred strains from 100 dairy herds in Denmark, 29 strains from 29 dairy herds in Pennsylvania, USA, 7 reference strains and 18 strains consisting of 9 paired strains from 9 quarters were investigated using biotyping (utilization of tagatose and sorbitol) and HindIII ribotyping [17].
 

Gene context of D-Tagatose

  • Detection of tagatose 1,6-bisphosphate aldolase activity was dependent on expression of the 36-kDa protein specified by lacD [18].
  • Differential display PCR demonstrated that the inactivation of S. gordonii luxS downregulated the expression of a number of genes, including gtfG, encoding glucosyltransferase; fruA, encoding extracellular exo-beta-D-fructosidase; and lacD encoding tagatose 1,6-diphosphate aldolase [19].
  • In a separate study to characterize the molecular basis of aldolase specificity, the agaY-encoded tagatose 1,6-bisphosphate aldolase of E. coli was cloned, expressed and kinetically characterized [20].
  • The S. mutans lacE and lacG genes are located in the same operon as the tagatose genes [21].
  • Genes for the lactose-specific PEP-PTS proteins, phospho-beta-galactosidase and tagatose 6-phosphate pathway enzymes are encoded by a single 8 kb operon, lacABCDFEGX, and there is a divergently transcribed lacR repressor gene [22].
 

Analytical, diagnostic and therapeutic context of D-Tagatose

References

  1. Molecular cloning, characterization, and nucleotide sequence of the tagatose 6-phosphate pathway gene cluster of the lactose operon of Lactococcus lactis. van Rooijen, R.J., van Schalkwijk, S., de Vos, W.M. J. Biol. Chem. (1991) [Pubmed]
  2. Crystal structure of Escherichia coli L-arabinose isomerase (ECAI), the putative target of biological tagatose production. Manjasetty, B.A., Chance, M.R. J. Mol. Biol. (2006) [Pubmed]
  3. Streptococcus mutans serotype c tagatose 6-phosphate pathway gene cluster. Jagusztyn-Krynicka, E.K., Hansen, J.B., Crow, V.L., Thomas, T.D., Honeyman, A.L., Curtiss, R. J. Bacteriol. (1992) [Pubmed]
  4. Tagatose and milk allergy. Taylor, S.L., Lambrecht, D.M., Hefle, S.L. Allergy (2005) [Pubmed]
  5. Cytoprotection by fructose and other ketohexoses during bile salt-induced apoptosis of hepatocytes. Zeid, I.M., Bronk, S.F., Fesmier, P.J., Gores, G.J. Hepatology (1997) [Pubmed]
  6. Increase in phosphoribosyl pyrophosphate induced by ATP and Pi depletion in hepatocytes. Vincent, M.F., Van den Berghe, G., Hers, H.G. FASEB J. (1989) [Pubmed]
  7. Sugar-derived Glasses Support Thermal and Photo-initiated Electron Transfer Processes over Macroscopic Distances. Navati, M.S., Friedman, J.M. J. Biol. Chem. (2006) [Pubmed]
  8. Bioconversion of D-galactose into D-tagatose by expression of L-arabinose isomerase. Roh, H.J., Kim, P., Park, Y.C., Choi, J.H. Biotechnol. Appl. Biochem. (2000) [Pubmed]
  9. Nucleotide and deduced amino acid sequences of the lacR, lacABCD, and lacFE genes encoding the repressor, tagatose 6-phosphate gene cluster, and sugar-specific phosphotransferase system components of the lactose operon of Streptococcus mutans. Rosey, E.L., Stewart, G.C. J. Bacteriol. (1992) [Pubmed]
  10. Pathway of gluconeogenesis from tagatose in rat hepatocytes. Rognstad, R. Arch. Biochem. Biophys. (1982) [Pubmed]
  11. Stimulation of glucose phosphorylation by fructose in isolated rat hepatocytes. Van Schaftingen, E., Vandercammen, A. Eur. J. Biochem. (1989) [Pubmed]
  12. Chemical indicators of heat treatment in fortified and special milks. Mendoza, M.R., Olano, A., Villamiel, M. J. Agric. Food Chem. (2005) [Pubmed]
  13. On the mechanism of hepatic glycogenolysis induced by anoxia or cyanide. Bollen, M., de Ruysscher, D., Stalmans, W. Biochem. Biophys. Res. Commun. (1983) [Pubmed]
  14. Tagatose production by immobilized recombinant Escherichia coli cells containing Geobacillus stearothermophilus l-arabinose isomerase mutant in a packed-bed bioreactor. Jung, E.S., Kim, H.J., Oh, D.K. Biotechnol. Prog. (2005) [Pubmed]
  15. Galactose metabolism by Streptococcus mutans. Abranches, J., Chen, Y.Y., Burne, R.A. Appl. Environ. Microbiol. (2004) [Pubmed]
  16. Phenotypic and genetic characterization of Lactococcus garvieae isolated in Spain from lactococcosis outbreaks and comparison with isolates of other countries and sources. Vela, A.I., Vázquez, J., Gibello, A., Blanco, M.M., Moreno, M.A., Liébana, P., Albendea, C., Alcalá, B., Mendez, A., Domínguez, L., Fernández-Garayzábal, J.F. J. Clin. Microbiol. (2000) [Pubmed]
  17. Genotypic and phenotypic diversity of Streptococcus dysgalactiae strains isolated from clinical and subclinical cases of bovine mastitis. Aarestrup, F.M., Jensen, N.E. Vet. Microbiol. (1996) [Pubmed]
  18. Lactose metabolism by Staphylococcus aureus: characterization of lacABCD, the structural genes of the tagatose 6-phosphate pathway. Rosey, E.L., Oskouian, B., Stewart, G.C. J. Bacteriol. (1991) [Pubmed]
  19. LuxS-based signaling in Streptococcus gordonii: autoinducer 2 controls carbohydrate metabolism and biofilm formation with Porphyromonas gingivalis. McNab, R., Ford, S.K., El-Sabaeny, A., Barbieri, B., Cook, G.S., Lamont, R.J. J. Bacteriol. (2003) [Pubmed]
  20. Exploring substrate binding and discrimination in fructose1, 6-bisphosphate and tagatose 1,6-bisphosphate aldolases. Zgiby, S.M., Thomson, G.J., Qamar, S., Berry, A. Eur. J. Biochem. (2000) [Pubmed]
  21. Isolation, characterization and nucleotide sequence of the Streptococcus mutans lactose-specific enzyme II (lacE) gene of the PTS and the phospho-beta-galactosidase (lacG) gene. Honeyman, A.L., Curtiss, R. J. Gen. Microbiol. (1993) [Pubmed]
  22. The use of bacterial luciferase genes as reporter genes in Lactococcus: regulation of the Lactococcus lactis subsp. lactis lactose genes. Eaton, T.J., Shearman, C.A., Gasson, M.J. J. Gen. Microbiol. (1993) [Pubmed]
  23. A feasible enzymatic process for D-tagatose production by an immobilized thermostable L-arabinose isomerase in a packed-bed bioreactor. Kim, H.J., Ryu, S.A., Kim, P., Oh, D.K. Biotechnol. Prog. (2003) [Pubmed]
  24. Tagatose, the new GRAS sweetener and health product. Levin, G.V. Journal of medicinal food. (2002) [Pubmed]
  25. Drug evaluation: tagatose in the treatment of type 2 diabetes and obesity. Moore, M.C. Current opinion in investigational drugs (London, England : 2000) (2006) [Pubmed]
 
WikiGenes - Universities