The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Roles of Cys148 and Asp179 in catalysis by deoxycytidylate hydroxymethylase from bacteriophage T4 examined by site-directed mutagenesis.

The proposed roles of Cys148 and Asp179 in deoxycytidylate (dCMP) hydroxymethylase (CH) have been tested using site-directed mutagenesis. CH catalyzes the formation of 5-(hydroxymethyl)-dCMP, essential for DNA synthesis in phage T4, from dCMP and methylenetetrahydrofolate. CH resembles thymidylate synthase ( TS), an enzyme of known three-dimensional structure, in both amino acid sequence and the reaction catalyzed. Conversion of Cys148 to Asp, Gly, or Ser decreases CH activity at least 10(5)-fold, consistent with a nucleophilic role for Cys148 (analogous to the catalytic Cys residue in TS). In crystalline TS, hydrogen bonds connect O4 and N3 of the substrate dUMP to the side-chain amide of an Asn; the corresponding residue in CH is Asp179. Conversion of Asp179 to Asn reduces the value of kcat/KM for dCMP by (1.5 x 10(4))-fold and increases the value of kcat/KM for dUMP by 60-fold; as a result, CH(D179N) has a slight preference for dUMP. Wild-type CH and CH(D179N) are covalently inactivated by 5-fluoro-dUMP, a mechanism-based inactivator of TS. Asp179 is proposed to stabilize covalent catalytic intermediates, by protonating N3 of the pyrimidine-CH adduct.[1]


WikiGenes - Universities