The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Uncoupling of the glucose growth defect and the deregulation of glycolysis in Saccharomyces cerevisiae Tps1 mutants expressing trehalose-6-phosphate-insensitive hexokinase from Schizosaccharomyces pombe.

In the yeast Saccharomyces cerevisiae inactivation of trehalose-6-phosphate (Tre6P) synthase (Tps1) encoded by the TPS1 gene causes a specific growth defect in the presence of glucose in the medium. The growth inhibition is associated with deregulation of the initial part of glycolysis. Sugar phosphates, especially fructose-1,6-bisphosphate (Fru1,6bisP), hyperaccumulate while the levels of ATP, Pi and downstream metabolites are rapidly depleted. This was suggested to be due to the absence of Tre6P inhibition on hexokinase. Here we show that overexpression of Tre6P (as well as glucose-6-phosphate (Glu6P))-insensitive hexokinase from Schizosaccharomyces pombe in a wild-type strain does not affect growth on glucose but still transiently enhances initial sugar phosphate accumulation. We have in addition replaced the three endogenous glucose kinases of S. cerevisiae by the Tre6P-insensitive hexokinase from S. pombe. High hexokinase activity was measured in cell extracts and growth on glucose was somewhat reduced compared to an S. cerevisiae wild-type strain but expression of the Tre6P-insensitive S. pombe hexokinase never caused the typical tps1Delta phenotype. Moreover, deletion of TPS1 in this strain expressing only the Tre6P-insensitive S. pombe hexokinase still resulted in a severe drop in growth capacity on glucose as well as sensitivity to millimolar glucose levels in the presence of excess galactose. In this case, poor growth on glucose was associated with reduced rather than enhanced glucose influx into glycolysis. Initial glucose transport was not affected. Apparently, deletion of TPS1 causes reduced activity of the S. pombe hexokinase in vivo. Our results show that Tre6P inhibition of hexokinase is not the major mechanism by which Tps1 controls the influx of glucose into glycolysis or the capacity to grow on glucose. In addition, they show that a Tre6P-insensitive hexokinase can still be controlled by Tps1 in vivo.[1]

References

 
WikiGenes - Universities