The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 

Links

 

Gene Review

HXK1  -  hexokinase 1

Saccharomyces cerevisiae S288c

Synonyms: HKA, Hexokinase PI, Hexokinase-1, Hexokinase-A, YFR053C
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of HXK1

 

High impact information on HXK1

 

Chemical compound and disease context of HXK1

 

Biological context of HXK1

 

Anatomical context of HXK1

  • These findings reveal a novel mechanism of gene regulation whereby the product of a glycolytic gene, normally resident in the cytosol, interacts directly with nuclear proteins to regulate the transcription of the HXK1 and GLK1 genes and to autoregulate its own transcription [17].
  • One important feature in order to understand the physiological function of hexokinase PH is that it is a phosphoprotein, since protein phosphorylation is essential in most metabolic signal transductions in eukaryotic cells [15].
  • To investigate whether trehalose 6-phosphate (Tre6P) is the sole mediator of hexokinase inhibition, we have reconstituted ethanolic fermentation from glucose in permeabilized spheroplasts of the wild-type, tps1Delta and tps2Delta (Tre6P phosphatase) strains [18].
  • A method for determining the intracellular distribution of enzymes in yeast provides no evidence for the association of hexokinase with mitochondria [19].
  • No substantial hexokinase activity was found to be associated with cellular organelles [19].
 

Associations of HXK1 with chemical compounds

 

Physical interactions of HXK1

  • The surface area of the hexokinase A-glucose complex exposed to solvent is smaller than that of native hexokinase B [24].
  • Indeed, initiation of Gal2p and FBPase proteolysis appears to require rapid transport of those substrates of the Hxt transporters that are at least partially metabolized by hexokinase Hxk2p [25].
  • The actin fold is a structural motif involved in binding of ATP to an otherwise diverse family of proteins that includes hexokinase, actin, and the 70 kDa heat shock protein [26].
 

Enzymatic interactions of HXK1

 

Regulatory relationships of HXK1

 

Other interactions of HXK1

 

Analytical, diagnostic and therapeutic context of HXK1

References

  1. Expression of the cry11A gene of Bacillus thuringiensis ssp. israelensis in Saccharomyces cerevisiae. Quintana-Castro, R., Ramírez-Suero, M., Moreno-Sanz, F., Ramírez-Lepe, M. Can. J. Microbiol. (2005) [Pubmed]
  2. Probing protein hydration and conformational states in solution. Reid, C., Rand, R.P. Biophys. J. (1997) [Pubmed]
  3. An artificial-intelligence technique for qualitatively deriving enzyme kinetic mechanisms from initial-velocity measurements and its application to hexokinase. Garfinkel, L., Cohen, D.M., Soo, V.W., Garfinkel, D., Kulikowski, C.A. Biochem. J. (1989) [Pubmed]
  4. Inhibition of hexokinase and protein kinase activities of tumor cells by a chloromethyl ketone derivative of lactic acid. Johnson, J.H., Zimniak, A., Racker, E. Biochemistry (1982) [Pubmed]
  5. Inelastic neutron scattering analysis of hexokinase dynamics and its modification on binding of glucose. Jacrot, B., Cusack, S., Dianoux, A.J., Engelman, D.M. Nature (1982) [Pubmed]
  6. Space-filling models of kinase clefts and conformation changes. Anderson, C.M., Zucker, F.H., Steitz, T.A. Science (1979) [Pubmed]
  7. Yak1p, a DYRK family kinase, translocates to the nucleus and phosphorylates yeast Pop2p in response to a glucose signal. Moriya, H., Shimizu-Yoshida, Y., Omori, A., Iwashita, S., Katoh, M., Sakai, A. Genes Dev. (2001) [Pubmed]
  8. Reg1p targets protein phosphatase 1 to dephosphorylate hexokinase II in Saccharomyces cerevisiae: characterizing the effects of a phosphatase subunit on the yeast proteome. Alms, G.R., Sanz, P., Carlson, M., Haystead, T.A. EMBO J. (1999) [Pubmed]
  9. The inducible N-acetylglucosamine catabolic pathway gene cluster in Candida albicans: discrete N-acetylglucosamine-inducible factors interact at the promoter of NAG1. Kumar, M.J., Jamaluddin, M.S., Natarajan, K., Kaur, D., Datta, A. Proc. Natl. Acad. Sci. U.S.A. (2000) [Pubmed]
  10. Volumetric and spectroscopic characterizations of glucose-hexokinase association. Filfil, R., Chalikian, T.V. FEBS Lett. (2003) [Pubmed]
  11. A method for identifying a proposed carbohydrate-binding motif of proteins. Baumann, M.A., Anderson, B.E. Glycobiology (1991) [Pubmed]
  12. Studies on the mechanism of toxicity of metrizamide-competitive inhibition of yeast hexokinase. Bertoni, J.M., Alexander, G.M. Biochem. Pharmacol. (1981) [Pubmed]
  13. Differences in substrate specificity and kinetic properties of the recombinant hexokinases HXK1 and HXK2 from Entamoeba histolytica. Kroschewski, H., Ortner, S., Steipe, B., Scheiner, O., Wiedermann, G., Duchêne, M. Mol. Biochem. Parasitol. (2000) [Pubmed]
  14. Transcriptional regulation of the Saccharomyces cerevisiae HXK1, HXK2 and GLK1 genes. Herrero, P., Galíndez, J., Ruiz, N., Martínez-Campa, C., Moreno, F. Yeast (1995) [Pubmed]
  15. Carbon source-dependent phosphorylation of hexokinase PII and its role in the glucose-signaling response in yeast. Randez-Gil, F., Sanz, P., Entian, K.D., Prieto, J.A. Mol. Cell. Biol. (1998) [Pubmed]
  16. Isolation and characterization of mutations in the HXK2 gene of Saccharomyces cerevisiae. Ma, H., Bloom, L.M., Zhu, Z.M., Walsh, C.T., Botstein, D. Mol. Cell. Biol. (1989) [Pubmed]
  17. The hexokinase 2 protein regulates the expression of the GLK1, HXK1 and HXK2 genes of Saccharomyces cerevisiae. Rodríguez, A., De La Cera, T., Herrero, P., Moreno, F. Biochem. J. (2001) [Pubmed]
  18. Reconstitution of ethanolic fermentation in permeabilized spheroplasts of wild-type and trehalose-6-phosphate synthase mutants of the yeast Saccharomyces cerevisiae. Noubhani, A., Bunoust, O., Rigoulet, M., Thevelein, J.M. Eur. J. Biochem. (2000) [Pubmed]
  19. A method for determining the intracellular distribution of enzymes in yeast provides no evidence for the association of hexokinase with mitochondria. Kovác, L., Nelson, B.D., Ernster, L. Biochem. Biophys. Res. Commun. (1986) [Pubmed]
  20. Complete nucleotide sequence of the hexokinase PI gene (HXK1) of Saccharomyces cerevisiae. Kopetzki, E., Entian, K.D., Mecke, D. Gene (1985) [Pubmed]
  21. Schizosaccharomyces pombe possesses an unusual and a conventional hexokinase: biochemical and molecular characterization of both hexokinases. Petit, T., Blázquez, M.A., Gancedo, C. FEBS Lett. (1996) [Pubmed]
  22. A carbon catabolite repression mutant of Saccharomyces cerevisiae with elevated hexokinase activity: evidence for regulatory control of hexokinase PII synthesis. Entian, K.D. Mol. Gen. Genet. (1981) [Pubmed]
  23. The high resolution crystal structure of yeast hexokinase PII with the correct primary sequence provides new insights into its mechanism of action. Kuser, P.R., Krauchenco, S., Antunes, O.A., Polikarpov, I. J. Biol. Chem. (2000) [Pubmed]
  24. Glucose-induced conformational change in yeast hexokinase. Bennett, W.S., Steitz, T.A. Proc. Natl. Acad. Sci. U.S.A. (1978) [Pubmed]
  25. Two distinct proteolytic systems responsible for glucose-induced degradation of fructose-1,6-bisphosphatase and the Gal2p transporter in the yeast Saccharomyces cerevisiae share the same protein components of the glucose signaling pathway. Horak, J., Regelmann, J., Wolf, D.H. J. Biol. Chem. (2002) [Pubmed]
  26. Functional interaction of hexokinase with ATP requires participation by both small and large lobes of the enzyme: implications for other proteins using the actin fold as a nucleotide binding motif. Wilson, J.E., Schwab, D.A. FASEB J. (1996) [Pubmed]
  27. The growth and signalling defects of the ggs1 (fdp1/byp1) deletion mutant on glucose are suppressed by a deletion of the gene encoding hexokinase PII. Hohmann, S., Neves, M.J., de Koning, W., Alijo, R., Ramos, J., Thevelein, J.M. Curr. Genet. (1993) [Pubmed]
  28. Novel alleles of yeast hexokinase PII with distinct effects on catalytic activity and catabolite repression of SUC2. Hohmann, S., Winderickx, J., de Winde, J.H., Valckx, D., Cobbaert, P., Luyten, K., de Meirsman, C., Ramos, J., Thevelein, J.M. Microbiology (Reading, Engl.) (1999) [Pubmed]
  29. During the initiation of fermentation overexpression of hexokinase PII in yeast transiently causes a similar deregulation of glycolysis as deletion of Tps1. Ernandes, J.R., De Meirsman, C., Rolland, F., Winderickx, J., de Winde, J., Brandão, R.L., Thevelein, J.M. Yeast (1998) [Pubmed]
  30. Studies on the mechanism of the antifungal action of benzoate. Krebs, H.A., Wiggins, D., Stubbs, M., Sols, A., Bedoya, F. Biochem. J. (1983) [Pubmed]
  31. Genetics of yeast glucokinase. Maitra, P.K., Lobo, Z. Genetics (1983) [Pubmed]
  32. A nitrogen-limited, glucose-repressed, continuous culture of Saccharomyces cerevisiae. Sierkstra, L.N., ter Schure, E.G., Verbakel, J.M., Verrips, C.T. Microbiology (Reading, Engl.) (1994) [Pubmed]
  33. Identification, cloning and sequence determination of the genes specifying hexokinase A and B from yeast. Stachelek, C., Stachelek, J., Swan, J., Botstein, D., Konigsberg, W. Nucleic Acids Res. (1986) [Pubmed]
  34. Molecular cloning and characterization of the gene HXK1 encoding the hexokinase from Yarrowia lipolytica. Petit, T., Gancedo, C. Yeast (1999) [Pubmed]
  35. Calorimetric determination of thermodynamic parameters of reaction reveals different enthalpic compensations of the yeast hexokinase isozymes. Bianconi, M.L. J. Biol. Chem. (2003) [Pubmed]
  36. Hexokinase 2 from Saccharomyces cerevisiae: regulation of oligomeric structure by in vivo phosphorylation at serine-14. Behlke, J., Heidrich, K., Naumann, M., Müller, E.C., Otto, A., Reuter, R., Kriegel, T. Biochemistry (1998) [Pubmed]
  37. Crystallization and preliminary crystal analysis of yeast hexokinase PI and PII. Kuser, P.R., Golubev, A.M., Polikarpov, I. Acta Crystallogr. D Biol. Crystallogr. (1999) [Pubmed]
 
WikiGenes - Universities