The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Parathyroid hormone-Smad3 axis exerts anti-apoptotic action and augments anabolic action of transforming growth factor beta in osteoblasts.

Although several studies indicated that parathyroid hormone (PTH) exerted anabolic action on bone, its precise mechanisms have been unknown. On the other hand, transforming growth factor beta (TGF-beta), abundantly stored in bone matrix, stimulates bone formation with a local injection in rodents. Although our previous study suggested that Smad3 is an important molecule for the stimulation of bone formation, no reports have been available about the effects of PTH on Smad3. In this present study, we examined the effects of PTH on Smad3 and the physiological significance in mouse osteoblastic cells. PTH promoted the expression of Smad3 mRNA within 10 min and the protein level in a dose-dependent manner in MC3T3-E1 and rat osteoblastic UMR-106 cells. Protein kinase A (PKA) activator as well as protein kinase C ( PKC) activators increased Smad3 protein level, and both PKA and PKC inhibitors antagonized PTH- induced Smad3, indicating that PTH promotes the production of Smad3 through both PKA and PKC pathways. Next, we examined anti-apoptotic effects of PTH and Smad3 in these cells, employing trypan blue, transferase-mediated nick end labeling, and Hoechst staining. Pretreatment with PTH or overexpression of Smad3 decreased the number of apoptotic cells induced by dexamethasone and etoposide. Moreover, a dominant negative mutant, Smad3DeltaC, abrogated PTH-induced anti-apoptotic effects. On the other hand, PTH augmented TGF-beta-induced transcriptional activity. Furthermore, PTH enhanced TGF-beta-induced production of type I collagen, whereas it did not affect TGF-beta-reduced proliferation in MC3T3-E1 cells. These observations indicated that PTH amplified the anabolic effects of TGF-beta by accelerating the transcriptional activity of Smad3. In conclusion, we first demonstrated that PTH-Smad3 axis exerts anti-apoptotic effects in osteoblasts and reinforces the anabolic action by TGF-beta in osteoblasts. Hence, PTH-Smad3 axis might be involved in the bone anabolic action of PTH.[1]


  1. Parathyroid hormone-Smad3 axis exerts anti-apoptotic action and augments anabolic action of transforming growth factor beta in osteoblasts. Sowa, H., Kaji, H., Iu, M.F., Tsukamoto, T., Sugimoto, T., Chihara, K. J. Biol. Chem. (2003) [Pubmed]
WikiGenes - Universities