The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 Reddi,  
 

Cartilage morphogenetic proteins: role in joint development, homoeostasis, and regeneration.

BACKGROUND: Articular cartilage homoeostasis is critical for joint function. The steady state homoeostasis of articular cartilage is a balance between anabolic morphogens such as cartilage derived morphogenetic proteins (CDMPs) and bone morphogenetic proteins (BMPs) of the BMP family and catabolic cytokines such as interleukin (IL)1, IL17, and tumour necrosis factor alpha. Although bone and articular cartilage are adjacent tissues, there is a profound difference in their regeneration potential. Bone has the highest potential for regeneration. On the other hand, articular cartilage is recalcitrant to repair. OBJECTIVE: To examine the hypothesis that the feeble innate regeneration ability of cartilage is due to the preponderance of catabolic cytokines such as IL1 and IL17. RESULTS: During a systematic investigation of CDMPs and cytokines IL17B (chondroleukin) was found in bovine articular cartilage. DISCUSSION AND CONCLUSIONS: BMP-7 and IL17B are present in articular cartilage and synthesised in chondrocytes as shown by northern blots and real-time reverse transcription-polymerase chain reaction. The coexistence of anabolic morphogens and catabolic cytokines in articular cartilage has important implications for cartilage homoeostasis and regeneration. The networks of signalling systems of morphogens and cytokines determine the net capacity for regenerative morphogenesis of articular cartilage. Finally, the feeble innate capacity for articular cartilage may be improved by targeted therapy by soluble receptors to block catabolic cytokines.[1]

References

 
WikiGenes - Universities