The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

FLT3 expressing leukemias are selectively sensitive to inhibitors of the molecular chaperone heat shock protein 90 through destabilization of signal transduction-associated kinases.

PURPOSE: We conducted studies to evaluate the hypothesis that FLT3 is a client of heat shock protein (Hsp) 90 and inhibitors of Hsp90 may be useful for therapy of leukemia. EXPERIMENTAL DESIGN: The effects of the Hsp90-inhibitor 17-allylamino-17-demethoxygeldanamycin (17-AAG) on cell growth, expression of signal transduction kinases, apoptosis, FLT3 phosphorylation and interaction with Hsp90 was determined in FLT3(+) human leukemias. RESULTS: We found that FLT3 is included in a multiprotein complex that includes Hsp90 and p23. 17-AAG inhibited FLT3 phosphorylation and interaction with Hsp90. FLT3(+) leukemias were significantly more sensitive to the Hsp90 inhibitors 17-AAG and Herbimycin A in cell growth assays than FLT3-negative leukemias. Cells transfected with FLT3 became sensitive to 17-AAG. Cell cycle inhibition and apoptosis were induced by 17-AAG. Cells with constitutive expression of FLT3, as a result of internal tandem duplication, were the most sensitive; cells with wild-type FLT3 were intermediate in sensitivity, and FLT3-negative cells were the least sensitive. 17-AAG resulted in reduced cellular mass of FLT3, RAF, and AKT. The mass of another Hsp, Hsp70, was increased. The expression level of MLL-AF4 fusion protein was not reduced by 17-AAG in human leukemia cells. CONCLUSIONS: FLT3(+) leukemias are sensitive to 17-AAG and Herbimycin A. 17-AAG inhibits leukemia cells with either FLT3-internal tandem duplication or wild-type FLT3, in part through destabilization of client kinases including FLT3, RAF, and AKT. 17-AAG is potentially useful for therapy of FLT3-expressing leukemias, including the mixed lineage leukemia fusion gene leukemias.[1]

References

 
WikiGenes - Universities