The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Overexpression of PHGPx and HSP60/10 protects against ischemia/reoxygenation injury.

Reactive oxygen species arising from ischemia/reperfusion (I/R) cause damage to cardiac tissue. We examined the effects of mitochondrial phospholipid hydroperoxide glutathione peroxidase (mPHGPx) and cytosolic PHGPx (cPHGPx) overexpression on protection against simulated I/R in neonatal rat cardiac myocytes (NCM). Additionally, a protective combinatorial effect with heat shock proteins 60 and 10 (HSP60/10) was investigated. NCM were infected with adenoviral vectors expressing mPHGPx, cPHGPx, HSP60/10, or an empty control (Adv-) and submitted to 8 h of ischemia followed by 16 h of reoxygenation. mPHGPx infection led to a 40% decrease in malondialdehyde and 4-hydroxy-2(E)-nonenal following I/R (p<.05). Creatine kinase and lactate dehydrogenase release were decreased in both mPHGPx-infected and HSP60/10-infected cells (p<.05). The combination of mPHGPx and HSP60/10 overexpression led to further protection (p<.01). DNA laddering and histone-associated DNA fragments were decreased in PHGPx- and HSP60/10-infected cells (p<.01). Cytochrome c release from mitochondria was decreased in mPHGPx-infected cells. Furthermore, mPHGPx overexpression preserved electron transport chain complex IV function following simulated I/R (p<.05). These results indicate that overexpression of PHGPx provides protection against damage resulting from simulated I/R injury, particularly in the mitochondria, and that the combination of mPHGPx and HSP60/10 imparts an added protective effect.[1]

References

  1. Overexpression of PHGPx and HSP60/10 protects against ischemia/reoxygenation injury. Hollander, J.M., Lin, K.M., Scott, B.T., Dillmann, W.H. Free Radic. Biol. Med. (2003) [Pubmed]
 
WikiGenes - Universities