The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Chemical Compound Review

Propanedial     propanedial

Synonyms: MALONALDEHYDE, CHEMBL446036, CCRIS 5168, NCI-C54842, AG-F-87888, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of malonaldehyde


Psychiatry related information on malonaldehyde


High impact information on malonaldehyde

  • Macrophages possess a receptor that binds low-density lipoproteins (LDL) containing lysine residues modified by acetylation (Ac LDL), acetoacetylation (AcAc LDL) or malondialdehyde treatment [11].
  • One potential source of endogenous DNA adducts is lipid peroxidation, which generates mutagenic carbonyl compounds such as malondialdehyde [12].
  • The results are consistent with the cross-linking of bacterial DNA by malonaldehyde leading to mutagenesis expressed through the error-prone repair system [2].
  • The results demonstrate that injection of malondialdehyde-modified LDL promotes a Th2 response that in turn increases the titers of the natural antibody T15/EO6, which recognizes the oxidized phospholipid POVPC [13].
  • Those EO- autoantibodies that bound to oxidized phospholipids (e.g., EO6) inhibited the binding and degradation of CuOx-LDL by mouse peritoneal macrophages up to 91%, whereas other IgM EO- autoantibodies, selected for binding to malondialdehyde (MDA)-LDL, had no influence on binding of either CuOx-LDL or MDA-LDL by macrophages [14].

Chemical compound and disease context of malonaldehyde


Biological context of malonaldehyde


Anatomical context of malonaldehyde


Associations of malonaldehyde with other chemical compounds


Gene context of malonaldehyde

  • Extensively oxidized LDL and LDL modified by exposure to fatty acid peroxidation products were efficient competitors for the uptake of labeled oxidized LDL by SR-AI/II-deficient Kupffer cells, while acetyl LDL and malondialdehyde-modified LDL were relatively poor competitors [34].
  • However, no significant decrease in superoxide dismutase activity or significant increase in malondialdehyde levels was observed in iron dextran-treated rats [35].
  • Levels of malondialdehyde, a marker of ROS generation and oxidant stress, were elevated in UCP2(- /-) livers at every examined time point [36].
  • Plasma extracellular glutathione peroxidase enzymatic activity was also decreased, whereas the lipid peroxidation products malondialdehyde and 4-hydroxy-2(E)-nonenal were increased in kidneys and blood plasma of cystic mice [37].
  • Genetic ablation of iNOS gene conferred to mice a significant resistance to TNBS induced lethality and colonic damage, and notably reduced nitrotyrosine formation and concentrations of malondialdehyde; it did not, however, affect neutrophil infiltration and intestinal ICAM-1 expression in the injured tissue [38].

Analytical, diagnostic and therapeutic context of malonaldehyde


  1. Malondialdehyde-altered protein occurs in atheroma of Watanabe heritable hyperlipidemic rabbits. Haberland, M.E., Fong, D., Cheng, L. Science (1988) [Pubmed]
  2. Mutagenicity of malonaldehyde, a decomposition product of peroxidized polyunsaturated fatty acids. Mukai, F.H., Goldstein, B.D. Science (1976) [Pubmed]
  3. Malondialdehyde-modified LDL as a marker of acute coronary syndromes. Holvoet, P., Collen, D., Van de Werf, F. JAMA (1999) [Pubmed]
  4. Oxygen free radicals in ischemic acute renal failure in the rat. Paller, M.S., Hoidal, J.R., Ferris, T.F. J. Clin. Invest. (1984) [Pubmed]
  5. Mechanism of hemolysis induced by ferriprotoporphyrin IX. Chou, A.C., Fitch, C.D. J. Clin. Invest. (1981) [Pubmed]
  6. Platelet membrane fluidity and plasma malondialdehyde levels in Alzheimer's demented patients with and without family history of dementia. Kálmán, J., Dey, I., Ilona, S.V., Matkovics, B., Brown, D., Janka, Z., Farkas, T., Joó, F. Biol. Psychiatry (1994) [Pubmed]
  7. Immunochemical crossreactivity of antibodies specific for "advanced glycation endproducts" with "advanced lipoxidation endproducts". Richter, T., Münch, G., Lüth, H.J., Arendt, T., Kientsch-Engel, R., Stahl, P., Fengler, D., Kuhla, B. Neurobiol. Aging (2005) [Pubmed]
  8. A multivitamin infusion prevents lipid peroxidation and improves transplantation performance. Rabl, H., Khoschsorur, G., Colombo, T., Petritsch, P., Rauchenwald, M., Költringer, P., Tatzber, F., Esterbauer, H. Kidney Int. (1993) [Pubmed]
  9. Plasma malondialdehyde as biomarker for oxidative stress: reference interval and effects of life-style factors. Nielsen, F., Mikkelsen, B.B., Nielsen, J.B., Andersen, H.R., Grandjean, P. Clin. Chem. (1997) [Pubmed]
  10. Plasma lipids, lipoproteins, and mammographic densities. Boyd, N.F., Connelly, P., Byng, J., Yaffe, M., Draper, H., Little, L., Jones, D., Martin, L.J., Lockwood, G., Tritchler, D. Cancer Epidemiol. Biomarkers Prev. (1995) [Pubmed]
  11. Platelet secretory products inhibit lipoprotein metabolism in macrophages. Phillips, D.R., Arnold, K., Innerarity, T.L. Nature (1985) [Pubmed]
  12. Detection of endogenous malondialdehyde-deoxyguanosine adducts in human liver. Chaudhary, A.K., Nokubo, M., Reddy, G.R., Yeola, S.N., Morrow, J.D., Blair, I.A., Marnett, L.J. Science (1994) [Pubmed]
  13. IL-5 links adaptive and natural immunity in reducing atherosclerotic disease. Daugherty, A., Rateri, D.L., King, V.L. J. Clin. Invest. (2004) [Pubmed]
  14. Monoclonal autoantibodies specific for oxidized phospholipids or oxidized phospholipid-protein adducts inhibit macrophage uptake of oxidized low-density lipoproteins. Hörkkö, S., Bird, D.A., Miller, E., Itabe, H., Leitinger, N., Subbanagounder, G., Berliner, J.A., Friedman, P., Dennis, E.A., Curtiss, L.K., Palinski, W., Witztum, J.L. J. Clin. Invest. (1999) [Pubmed]
  15. Modulation of peroxidation in murine melanoma by dietary tyrosine-phenylalanine restriction, levodopa methylester chemotherapy, and sodium ascorbate supplementation. Pierson, H.F., Meadows, G.G. J. Natl. Cancer Inst. (1985) [Pubmed]
  16. Delayed treatment with lithospermate B attenuates experimental diabetic renal injury. Lee, G.T., Ha, H., Jung, M., Li, H., Hong, S.W., Cha, B.S., Lee, H.C., Cho, Y.D. J. Am. Soc. Nephrol. (2003) [Pubmed]
  17. Inhibition of red cell membrane lipid peroxidation by sulphasalazine and 5-aminosalicylic acid. Greenfield, S.M., Punchard, N.A., Thompson, R.P. Gut (1991) [Pubmed]
  18. Association between reactive oxygen species and disease activity in chronic hepatitis C. De Maria, N., Colantoni, A., Fagiuoli, S., Liu, G.J., Rogers, B.K., Farinati, F., Van Thiel, D.H., Floyd, R.A. Free Radic. Biol. Med. (1996) [Pubmed]
  19. Oxidative retinal products and ocular damages in diabetic patients. Grattagliano, I., Vendemiale, G., Boscia, F., Micelli-Ferrari, T., Cardia, L., Altomare, E. Free Radic. Biol. Med. (1998) [Pubmed]
  20. Role of superoxide anion in host cell injury induced by mycoplasma pneumoniae infection. A study in normal and trisomy 21 cells. Almagor, M., Kahane, I., Yatziv, S. J. Clin. Invest. (1984) [Pubmed]
  21. Blockade of Poly(ADP-ribose) synthetase inhibits neutrophil recruitment, oxidant generation, and mucosal injury in murine colitis. Zingarelli, B., Szabó, C., Salzman, A.L. Gastroenterology (1999) [Pubmed]
  22. Feeding acetyl-L-carnitine and lipoic acid to old rats significantly improves metabolic function while decreasing oxidative stress. Hagen, T.M., Liu, J., Lykkesfeldt, J., Wehr, C.M., Ingersoll, R.T., Vinarsky, V., Bartholomew, J.C., Ames, B.N. Proc. Natl. Acad. Sci. U.S.A. (2002) [Pubmed]
  23. Scavenger receptor-mediated recognition of maleyl bovine plasma albumin and the demaleylated protein in human monocyte macrophages. Haberland, M.E., Fogelman, A.M. Proc. Natl. Acad. Sci. U.S.A. (1985) [Pubmed]
  24. Induction of frameshift and base pair substitution mutations by the major DNA adduct of the endogenous carcinogen malondialdehyde. VanderVeen, L.A., Hashim, M.F., Shyr, Y., Marnett, L.J. Proc. Natl. Acad. Sci. U.S.A. (2003) [Pubmed]
  25. Impairment of macrophage functions after ingestion of Plasmodium falciparum-infected erythrocytes or isolated malarial pigment. Schwarzer, E., Turrini, F., Ulliers, D., Giribaldi, G., Ginsburg, H., Arese, P. J. Exp. Med. (1992) [Pubmed]
  26. In vivo externalization of phosphatidylserine and phosphatidylethanolamine in the membrane bilayer and hypercoagulability by the lipid peroxidation of erythrocytes in rats. Jain, S.K. J. Clin. Invest. (1985) [Pubmed]
  27. Alterations in the structure, physicochemical properties, and pH of hepatocyte lysosomes in experimental iron overload. Myers, B.M., Prendergast, F.G., Holman, R., Kuntz, S.M., LaRusso, N.F. J. Clin. Invest. (1991) [Pubmed]
  28. Iron chelation as a possible mechanism for aspirin-induced malondialdehyde production by mouse liver microsomes and mitochondria. Schwarz, K.B., Arey, B.J., Tolman, K., Mahanty, S. J. Clin. Invest. (1988) [Pubmed]
  29. Proteinuria in passive Heymann nephritis is associated with lipid peroxidation and formation of adducts on type IV collagen. Neale, T.J., Ojha, P.P., Exner, M., Poczewski, H., Rüger, B., Witztum, J.L., Davis, P., Kerjaschki, D. J. Clin. Invest. (1994) [Pubmed]
  30. Effects of verapamil on the acute toxicity of doxorubicin in vivo. Sridhar, R., Dwivedi, C., Anderson, J., Baker, P.B., Sharma, H.M., Desai, P., Engineer, F.N. J. Natl. Cancer Inst. (1992) [Pubmed]
  31. Activation of hepatic stellate cells by TGF alpha and collagen type I is mediated by oxidative stress through c-myb expression. Lee, K.S., Buck, M., Houglum, K., Chojkier, M. J. Clin. Invest. (1995) [Pubmed]
  32. Malondialdehyde and 4-hydroxynonenal protein adducts in plasma and liver of rats with iron overload. Houglum, K., Filip, M., Witztum, J.L., Chojkier, M. J. Clin. Invest. (1990) [Pubmed]
  33. Enhancement of platelet function by superoxide anion. Handin, R.I., Karabin, R., Boxer, G.J. J. Clin. Invest. (1977) [Pubmed]
  34. Oxidized or acetylated low density lipoproteins are rapidly cleared by the liver in mice with disruption of the scavenger receptor class A type I/II gene. Ling, W., Lougheed, M., Suzuki, H., Buchan, A., Kodama, T., Steinbrecher, U.P. J. Clin. Invest. (1997) [Pubmed]
  35. Effects of iron loading on free radical scavenging enzymes and lipid peroxidation in rat liver. Fletcher, L.M., Roberts, F.D., Irving, M.G., Powell, L.W., Halliday, J.W. Gastroenterology (1989) [Pubmed]
  36. Uncoupling protein-2 deficiency promotes oxidant stress and delays liver regeneration in mice. Horimoto, M., Fülöp, P., Derdák, Z., Wands, J.R., Baffy, G. Hepatology (2004) [Pubmed]
  37. Oxidant stress and reduced antioxidant enzyme protection in polycystic kidney disease. Maser, R.L., Vassmer, D., Magenheimer, B.S., Calvet, J.P. J. Am. Soc. Nephrol. (2002) [Pubmed]
  38. Reduced oxidative and nitrosative damage in murine experimental colitis in the absence of inducible nitric oxide synthase. Zingarelli, B., Szabó, C., Salzman, A.L. Gut (1999) [Pubmed]
  39. Oxygen radicals generated at reflow induce peroxidation of membrane lipids in reperfused hearts. Ambrosio, G., Flaherty, J.T., Duilio, C., Tritto, I., Santoro, G., Elia, P.P., Condorelli, M., Chiariello, M. J. Clin. Invest. (1991) [Pubmed]
  40. Oxidant damage of the lipids and proteins of the erythrocyte membranes in unstable hemoglobin disease. Evidence for the role of lipid peroxidation. Flynn, T.P., Allen, D.W., Johnson, G.J., White, J.G. J. Clin. Invest. (1983) [Pubmed]
  41. Ibuprofen prevents oxidant lung injury and in vitro lipid peroxidation by chelating iron. Kennedy, T.P., Rao, N.V., Noah, W., Michael, J.R., Jafri, M.H., Gurtner, G.H., Hoidal, J.R. J. Clin. Invest. (1990) [Pubmed]
  42. Malonaldehyde in cervical mucus associated with copper IUD. Bond, A.M., Briggs, M.H., Deprez, P.P., Jones, R.D., Wallace, G.G. Lancet (1980) [Pubmed]
WikiGenes - Universities