The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Evidence that SNF2/SWI2 and SNF5 activate transcription in yeast by altering chromatin structure.

Changes in chromatin structure have frequently been correlated with changes in transcription. However, the cause-and-effect relationship between chromatin structure and transcription has been hard to determine. In addition, identifying the proteins that regulate chromatin structure has been difficult. Recent evidence suggests that a functionally related set of yeast transcriptional activators (SNF2/SWI2, SNF5, SNF6, SWI1, and SWI3), required for transcription of a diverse set of genes, may affect chromatin structure. We now present genetic and molecular evidence that at least two of these transcriptional activators, SNF2/SWI2 and SNF5, function by antagonizing repression mediated by nucleosomes. First, the transcriptional defects in strains lacking these SNF genes are suppressed by a deletion of one of the two sets of genes encoding histones H2A and H2B, (hta1-htb1) delta. Second, at one affected promoter (SUC2), chromatin structure is altered in snf2/swi2 and snf5 mutants, and this chromatin defect is suppressed by (hta1-htb1) delta. Finally, analysis of chromatin structure at a mutant SUC2 promoter, in which the TATA box has been destroyed, demonstrates that the differences in SUC2 chromatin structure between SNF5+ and snf5 mutant strains are not simply an effect of different levels of SUC2 transcription. Thus, these results strongly suggest that SNF2/SWI2 and SNF5 cause changes in chromatin structure and that these changes allow transcriptional activation.[1]


  1. Evidence that SNF2/SWI2 and SNF5 activate transcription in yeast by altering chromatin structure. Hirschhorn, J.N., Brown, S.A., Clark, C.D., Winston, F. Genes Dev. (1992) [Pubmed]
WikiGenes - Universities