The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Do multidrug resistance-associated protein-1 and -2 play any role in the elimination of estradiol-17 beta-glucuronide and 2,4-dinitrophenyl-S-glutathione across the blood-cerebrospinal fluid barrier?

The purpose of this study was to examine the role of multidrug resistance-associated protein-1 and -2 ( Mrp1 and Mrp2) in the efflux transport of organic anions across the blood-cerebrospinal fluid (CSF) barrier. The CSF concentration of estradiol-17beta-glucuronide (E(2)17betaG) and 2,4-dinitrophenyl-S-glutathione (DNP-SG) in the CSF after intracerebroventricular and intravenous injection were compared between wild-type and Mrp1 gene knockout mice. There was no significant difference in the apparent CSF elimination rate constants of E(2)17betaG (0.158 and 0.145 min(-1)) and DNP-SG (0.116 and 0.0779 min(-1)) between wild-type and Mrp1 knockout mice, respectively. After intravenous administration of E(2)17betaG, its brain-to-serum and CSF-to-serum concentration ratios in Mrp1 knockout mice were not significantly different from those in the wild-type. Results from in vivo and in vitro studies using Eisai hyperbilirubinemic rats, in which Mrp2 is hereditarily deficient, were similar to those using normal rats. Quantitative polymerase chain reaction (PCR) showed that the expression level of Mrp4 and Mrp5 was several times higher than that of Mrp1, whereas the expression levels of Mrp2, Mrp3, and Mrp6 were negligible or low. Therefore, Mrp4 and Mrp5 may contribute to the efflux transport of E(2)17betaG and DNP-SG from the CSF.[1]

References

 
WikiGenes - Universities