Phenotypic modulation of cultured bladder smooth muscle cells and the expression of inducible nitric oxide synthase.
Phenotypic modulation of smooth muscle is associated with various pathological conditions, including bladder dysfunction. Cytoskeletal dynamics modulate the cell phenotype and were recently shown to be involved in regulation of inducible nitric oxide synthase (iNOS). We tested the hypothesis that the cell differentiation status affects iNOS expression, and that iNOS is preferentially expressed in immature dedifferentiated bladder smooth muscle cells (BSMC). Isolated at BSMC were put into different stages of differentiation by serum deprivation on laminin-coated plates in the presence of IGF-I and by interaction with Rho signaling and actin polymerization. iNOS and smooth muscle-myosin heavy chain (SM-MHC) protein expression were investigated with Western blot analysis. Our results showed iNOS protein in BSMC exposed to interleukin-1 beta (2 ng/ml) + TNF-alpha (50 ng/ml). Growth of BSMC in serum-free medium on laminin in the presence of IGF-I increased SM-MHC expression, whereas cytokine-induced iNOS was inhibited. Disruption of F-actin with latrunculin B (0.5 microM) potentiated iNOS expression and decreased SM-MHC expression. Rho inhibition with C3 (2.5 microg/ml) increased iNOS expression, whereas SM-MHC expression was slightly decreased. Rho-kinase inhibition with Y-27632 (10 microM) mediated a decrease in iNOS and a slight increase in SM-MHC expression. In conclusion, the capacity of BSMC to express iNOS was negatively correlated to differentiation status measured as SM-MHC expression. Actin cytoskeletal dynamics and Rho signaling are involved in regulation of cytokine- induced iNOS expression in BSMC. Phenotypic changes and impairment in actin cytoskeleton formation may potentiate cytokine activation and in turn increase nitric oxide production in the bladder during disease.[1]References
- Phenotypic modulation of cultured bladder smooth muscle cells and the expression of inducible nitric oxide synthase. Johansson, R., Persson, K. Am. J. Physiol. Regul. Integr. Comp. Physiol. (2004) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg