The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Transforming growth factor beta1 induction of vascular endothelial growth factor receptor 1: mechanism of pericyte-induced vascular survival in vivo.

Degeneration of vessels precedes and precipitates the devastating ischemia of many diseases, including retinopathy of prematurity and diabetic retinopathy. Ischemia then leads to proliferative retinopathy and blindness. Understanding the mechanisms of blood vessel degeneration is critical to prevention of these diseases. Vessel loss is associated with oxygen-induced suppression of vascular endothelial growth factor (VEGF) and with pericyte (vascular smooth muscle cell) dropout. The molecular mechanism of pericyte protection of the vasculature is unknown. We show that transforming growth factor beta1 (TGF-beta1)-expressing pericytes are specifically found on vessels resistant to oxygen-induced loss. TGF-beta1 potently induces VEGF receptor 1 (VEGFR-1) expression in endothelial cells and thereby prevents oxygen-induced vessel loss in vivo. Vessel survival is further stimulated with a VEGFR-1-specific ligand, placental growth factor 1. TGF-beta1 induction of VEGFR-1 in endothelial cells explains pericyte protection of vessels and the selective vulnerability of neonatal vessels to oxygen. These results implicate induction and activation of VEGFR-1 as critical targets to prevent vessel loss.[1]

References

  1. Transforming growth factor beta1 induction of vascular endothelial growth factor receptor 1: mechanism of pericyte-induced vascular survival in vivo. Shih, S.C., Ju, M., Liu, N., Mo, J.R., Ney, J.J., Smith, L.E. Proc. Natl. Acad. Sci. U.S.A. (2003) [Pubmed]
 
WikiGenes - Universities