The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Pericytes

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Pericytes

 

Psychiatry related information on Pericytes

 

High impact information on Pericytes

  • This study revealed that the participation of Pdgfrb(-/-) cells in all muscle lineages (smooth, cardiac, skeletal and pericyte) was reduced by eightfold compared with Pdgfrb(+/+) cells, and that participation of Pdgfrb(+/-) cells was reduced by twofold (eightfold for pericytes) [7].
  • Pericyte loss and microaneurysm formation in PDGF-B-deficient mice [8].
  • Here we show that integrin alpha4beta1 (VLA-4) and VCAM-1 promote close intercellular adhesion between ECs and pericytes and that this interaction is required for blood vessel formation [9].
  • Antagonists of this integrin-ligand pair block the adhesion of mural cells to proliferating endothelia in vitro and in vivo, thereby inducing apoptosis of ECs and pericytes and inhibiting neovascularization [9].
  • In contrast, a kinase inhibitor incorporating selectivity for PDGFRs (SU6668) is shown to block further growth of end-stage tumors, eliciting detachment of pericytes and disruption of tumor vascularity [10].
 

Chemical compound and disease context of Pericytes

 

Biological context of Pericytes

 

Anatomical context of Pericytes

  • Pre-treatment of two types of human vascular pericytes, liver fat-storing cells or glomerular mesangial cells, with IFN-gamma dramatically enhanced DNA synthesis in response to PDGF or EGF [20].
  • Simultaneous localization of beta actin with the entire F-actin pool was performed on microvascular pericytes or endothelial cells and 3T3 fibroblasts recovering from injury using anti-beta actin IgG in combination with fluorescent phalloidin [21].
  • We show that pericytes of true capillaries (midcapillaries) apparently lack the smooth muscle isoform of alpha-actin whereas transitional pericytes of pre- and postcapillary microvascular segments do express this isoform [22].
  • Results of these experiments revealed that pericyte beta actin is localized beneath the plasma membrane in association with filopods, pseudopods, and fan lamellae [21].
  • Here, we show that after ischemic challenge, eNOS knockout mice [eNOS (-/-)] have defects in arteriogenesis and functional blood flow reserve after muscle stimulation and pericyte recruitment, but no impairment in endothelial progenitor cell recruitment [1].
 

Associations of Pericytes with chemical compounds

  • These results and our previous findings concerning the presence of a cyclic GMP-dependent protein kinase (Joyce, N., P. DeCamilli, and J. Boyles, 1984, Microvasc. Res. 28:206-219) in pericytes demonstrate that these cells contain significant amounts of at least two proteins important for contraction regulation [23].
  • Identification of multiple genes in bovine retinal pericytes altered by exposure to elevated levels of glucose by using mRNA differential display [24].
  • Blood-borne WGA-HRP labeled the entire cerebrovascular tree from the luminal side 5 min after injection; pericytes, located on the abluminal surface of cerebral endothelia, sequestered the lectin conjugate 6 hr later [25].
  • STI571 treatment also decreased pericyte coverage on tumor-associated endothelial cells [26].
  • The numbers of both endothelial cells and pericytes increased significantly under hypoxic conditions; the O2 concentrations that achieved maximal growth promotion were 10% for endothelial cells and 2.5% for pericytes [27].
 

Gene context of Pericytes

  • This is functionally important as administration of an antiangiogenic TSP-1 peptide (ABT-526) markedly inhibited growth of VEGF(-/-) tumors, with some ingress of pericytes [28].
  • Ang1 mediates vessel maturation and integrity by the recruitment of pericytes [29].
  • Conversely, intraocular injection of VEGF accelerated pericyte coverage of the preformed endothelial plexus, thereby revealing a novel function of this pleiotropic angiogenic growth factor [30].
  • Heterozygous angiopoietin-2 deficiency completely prevented diabetes-induced pericyte loss and reduced the number of acellular capillary segments [31].
  • Our results show that SDF-1 protein and mRNA are normally expressed by endothelial cells, pericytes, and either resident or explanted CD1a+ dendritic cells [32].
 

Analytical, diagnostic and therapeutic context of Pericytes

References

  1. Endothelial nitric oxide synthase is critical for ischemic remodeling, mural cell recruitment, and blood flow reserve. Yu, J., deMuinck, E.D., Zhuang, Z., Drinane, M., Kauser, K., Rubanyi, G.M., Qian, H.S., Murata, T., Escalante, B., Sessa, W.C. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
  2. Regulator of G-protein signaling-5 induction in pericytes coincides with active vessel remodeling during neovascularization. Berger, M., Bergers, G., Arnold, B., Hämmerling, G.J., Ganss, R. Blood (2005) [Pubmed]
  3. Characterization of endothelin receptors and effects of endothelin on diacylglycerol and protein kinase C in retinal capillary pericytes. Lee, T.S., Hu, K.Q., Chao, T., King, G.L. Diabetes (1989) [Pubmed]
  4. The effect of aminoguanidine and tolrestat on glucose toxicity in bovine retinal capillary pericytes. Chibber, R., Molinatti, P.A., Wong, J.S., Mirlees, D., Kohner, E.M. Diabetes (1994) [Pubmed]
  5. The receptor for complement anaphylatoxin C3a is expressed by myeloid cells and nonmyeloid cells in inflamed human central nervous system: analysis in multiple sclerosis and bacterial meningitis. Gasque, P., Singhrao, S.K., Neal, J.W., Wang, P., Sayah, S., Fontaine, M., Morgan, B.P. J. Immunol. (1998) [Pubmed]
  6. The glutathione levels are reduced in Goto-Kakizaki rat retina, but are not influenced by aminoguanidine treatment. Agardh, C.D., Agardh, E., Hultberg, B., Qian, Y., Ostenson, C.G. Curr. Eye Res. (1998) [Pubmed]
  7. Chimaeric analysis reveals role of Pdgf receptors in all muscle lineages. Crosby, J.R., Seifert, R.A., Soriano, P., Bowen-Pope, D.F. Nat. Genet. (1998) [Pubmed]
  8. Pericyte loss and microaneurysm formation in PDGF-B-deficient mice. Lindahl, P., Johansson, B.R., Levéen, P., Betsholtz, C. Science (1997) [Pubmed]
  9. Integrin alpha4beta1-VCAM-1-mediated adhesion between endothelial and mural cells is required for blood vessel maturation. Garmy-Susini, B., Jin, H., Zhu, Y., Sung, R.J., Hwang, R., Varner, J. J. Clin. Invest. (2005) [Pubmed]
  10. Benefits of targeting both pericytes and endothelial cells in the tumor vasculature with kinase inhibitors. Bergers, G., Song, S., Meyer-Morse, N., Bergsland, E., Hanahan, D. J. Clin. Invest. (2003) [Pubmed]
  11. Hyperglycemia-induced defects in angiogenesis in the chicken chorioallantoic membrane model. Larger, E., Marre, M., Corvol, P., Gasc, J.M. Diabetes (2004) [Pubmed]
  12. Palmitate-induced apoptosis of microvascular endothelial cells and pericytes. Yamagishi, S., Okamoto, T., Amano, S., Inagaki, Y., Koga, K., Koga, M., Choei, H., Sasaki, N., Kikuchi, S., Takeuchi, M., Makita, Z. Mol. Med. (2002) [Pubmed]
  13. DNA-synthesis regulation and correlation with inositol trisphosphate levels in cultured bovine retinal capillary pericytes. Li, W.Y., Tang, L., Zhou, Q., Qin, M., Hu, T.S. Exp. Eye Res. (1989) [Pubmed]
  14. Retinal toxicity of intravitreal gentamicin. Brown, G.C., Eagle, R.C., Shakin, E.P., Gruber, M., Arbizio, V.V. Arch. Ophthalmol. (1990) [Pubmed]
  15. Angiogenesis in the human corpus luteum: simulated early pregnancy by HCG treatment is associated with both angiogenesis and vessel stabilization. Wulff, C., Dickson, S.E., Duncan, W.C., Fraser, H.M. Hum. Reprod. (2001) [Pubmed]
  16. Inhibition of endothelial cell movement by pericytes and smooth muscle cells: activation of a latent transforming growth factor-beta 1-like molecule by plasmin during co-culture. Sato, Y., Rifkin, D.B. J. Cell Biol. (1989) [Pubmed]
  17. Expression of tissue factor procoagulant activity: regulation by cytosolic calcium. Bach, R., Rifkin, D.B. Proc. Natl. Acad. Sci. U.S.A. (1990) [Pubmed]
  18. Stromal matrix metalloproteinase-9 regulates the vascular architecture in neuroblastoma by promoting pericyte recruitment. Chantrain, C.F., Shimada, H., Jodele, S., Groshen, S., Ye, W., Shalinsky, D.R., Werb, Z., Coussens, L.M., DeClerck, Y.A. Cancer Res. (2004) [Pubmed]
  19. Induction of resistance to endothelin-1's biochemical actions by elevated glucose levels in retinal pericytes. de la Rubia, G., Oliver, F.J., Inoguchi, T., King, G.L. Diabetes (1992) [Pubmed]
  20. Interferon-gamma-mediated activation of STAT1alpha regulates growth factor-induced mitogenesis. Marra, F., Choudhury, G.G., Abboud, H.E. J. Clin. Invest. (1996) [Pubmed]
  21. Beta actin and its mRNA are localized at the plasma membrane and the regions of moving cytoplasm during the cellular response to injury. Hoock, T.C., Newcomb, P.M., Herman, I.M. J. Cell Biol. (1991) [Pubmed]
  22. Heterogeneity of microvascular pericytes for smooth muscle type alpha-actin. Nehls, V., Drenckhahn, D. J. Cell Biol. (1991) [Pubmed]
  23. Contractile proteins in pericytes. I. Immunoperoxidase localization of tropomyosin. Joyce, N.C., Haire, M.F., Palade, G.E. J. Cell Biol. (1985) [Pubmed]
  24. Identification of multiple genes in bovine retinal pericytes altered by exposure to elevated levels of glucose by using mRNA differential display. Aiello, L.P., Robinson, G.S., Lin, Y.W., Nishio, Y., King, G.L. Proc. Natl. Acad. Sci. U.S.A. (1994) [Pubmed]
  25. Transcytotic pathway for blood-borne protein through the blood-brain barrier. Broadwell, R.D., Balin, B.J., Salcman, M. Proc. Natl. Acad. Sci. U.S.A. (1988) [Pubmed]
  26. Simultaneous inhibition of EGFR, VEGFR, and platelet-derived growth factor receptor signaling combined with gemcitabine produces therapy of human pancreatic carcinoma and prolongs survival in an orthotopic nude mouse model. Yokoi, K., Sasaki, T., Bucana, C.D., Fan, D., Baker, C.H., Kitadai, Y., Kuwai, T., Abbruzzese, J.L., Fidler, I.J. Cancer Res. (2005) [Pubmed]
  27. Possible participation of autocrine and paracrine vascular endothelial growth factors in hypoxia-induced proliferation of endothelial cells and pericytes. Nomura, M., Yamagishi, S., Harada, S., Hayashi, Y., Yamashima, T., Yamashita, J., Yamamoto, H. J. Biol. Chem. (1995) [Pubmed]
  28. Contrasting effects of VEGF gene disruption in embryonic stem cell-derived versus oncogene-induced tumors. Viloria-Petit, A., Miquerol, L., Yu, J.L., Gertsenstein, M., Sheehan, C., May, L., Henkin, J., Lobe, C., Nagy, A., Kerbel, R.S., Rak, J. EMBO J. (2003) [Pubmed]
  29. Angiopoietins can directly activate endothelial cells and neutrophils to promote proinflammatory responses. Lemieux, C., Maliba, R., Favier, J., Théorêt, J.F., Merhi, Y., Sirois, M.G. Blood (2005) [Pubmed]
  30. A plasticity window for blood vessel remodelling is defined by pericyte coverage of the preformed endothelial network and is regulated by PDGF-B and VEGF. Benjamin, L.E., Hemo, I., Keshet, E. Development (1998) [Pubmed]
  31. Angiopoietin-2 causes pericyte dropout in the normal retina: evidence for involvement in diabetic retinopathy. Hammes, H.P., Lin, J., Wagner, P., Feng, Y., Vom Hagen, F., Krzizok, T., Renner, O., Breier, G., Brownlee, M., Deutsch, U. Diabetes (2004) [Pubmed]
  32. Stromal-cell derived factor is expressed by dendritic cells and endothelium in human skin. Pablos, J.L., Amara, A., Bouloc, A., Santiago, B., Caruz, A., Galindo, M., Delaunay, T., Virelizier, J.L., Arenzana-Seisdedos, F. Am. J. Pathol. (1999) [Pubmed]
  33. Cultured rat mesangial cells contain smooth muscle alpha-actin not found in vivo. Elger, M., Drenckhahn, D., Nobiling, R., Mundel, P., Kriz, W. Am. J. Pathol. (1993) [Pubmed]
  34. Effect of elevated glucose concentration on membrane voltage regulation in retinal capillary pericytes. Berweck, S., Thieme, H., Helbig, H., Lepple-Wienhues, A., Wiederholt, M. Diabetes (1993) [Pubmed]
  35. Pericyte production of cell-associated VEGF is differentiation-dependent and is associated with endothelial survival. Darland, D.C., Massingham, L.J., Smith, S.R., Piek, E., Saint-Geniez, M., D'Amore, P.A. Dev. Biol. (2003) [Pubmed]
  36. Characterization of smooth muscle cell and pericyte differentiation in the rat retina in vivo. Hughes, S., Chan-Ling, T. Invest. Ophthalmol. Vis. Sci. (2004) [Pubmed]
  37. Retinal capillary pericyte proliferation and c-Fos mRNA induction by prostaglandin D2 through the cAMP response element. Sakurai, S., Alam, S., Pagan-Mercado, G., Hickman, F., Tsai, J.Y., Zelenka, P., Sato, S. Invest. Ophthalmol. Vis. Sci. (2002) [Pubmed]
 
WikiGenes - Universities