The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

EBV-induced molecule 1 ligand chemokine (ELC/CCL19) promotes IFN-gamma-dependent antitumor responses in a lung cancer model.

The antitumor efficacy of EBV-induced molecule 1 ligand CC chemokine (ELC/CCL19) was evaluated in a murine lung cancer model. The ability of ELC/CCL19 to chemoattract both dendritic cells and T lymphocytes formed the rationale for this study. Compared with diluent-treated tumor-bearing mice, intratumoral injection of recombinant ELC/CCL19 led to significant systemic reduction in tumor volumes (p < 0.01). ELC/CCL19-treated mice exhibited an increased influx of CD4 and CD8 T cell subsets as well as dendritic cells at the tumor sites. These cell infiltrates were accompanied by increases in IFN-gamma, MIG/CXCL9, IP-10/CXCL10, GM-CSF, and IL-12 but a concomitant decrease in the immunosuppressive molecules PGE(2) and TGFbeta. Transfer of T lymphocytes from ELC/CCL19 treated tumor-bearing mice conferred the antitumor therapeutic efficacy of ELC/CCL19 to naive mice. ELC/CCL19 treated tumor-bearing mice showed enhanced frequency of tumor specific T lymphocytes secreting IFN-gamma. In vivo depletion of IFN-gamma, MIG/CXCL9, or IP-10/CXCL10 significantly reduced the antitumor efficacy of ELC/CCL19. These findings provide a strong rationale for further evaluation of ELC/CCL19 in tumor immunity and its use in cancer immunotherapy.[1]


  1. EBV-induced molecule 1 ligand chemokine (ELC/CCL19) promotes IFN-gamma-dependent antitumor responses in a lung cancer model. Hillinger, S., Yang, S.C., Zhu, L., Huang, M., Duckett, R., Atianzar, K., Batra, R.K., Strieter, R.M., Dubinett, S.M., Sharma, S. J. Immunol. (2003) [Pubmed]
WikiGenes - Universities