The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

The role of oxidative stress in salt-induced hypertension.

BACKGROUND: Impairment of endothelial function during hypertension is associated with increased production of superoxide radicals and reduced antioxidants. We investigated the involvement of oxidative stress in Dahl salt-sensitive (SS) and salt-resistant (SR) rats. METHODS: For a 2-week period, male rats were fed either high salt (HS; 8% sodium chloride) or low salt (LS; 0.3% sodium chloride) diets. Before and weekly on the diets, mean arterial pressure (MAP) and heart rate were measured by tail-cuff plethysmography. At the end of the experiment, plasma and tissue samples were collected for analysis of nitric oxide, prostacyclin, glutathione, and isoprostane. RESULTS: The MAP was increased in SS rats on HS diet, but not in those on a LS diet or in SR rats on either diet. Plasma levels of nitric oxide were reduced in SS rats on HS diet. Plasma prostacyclin levels in SS rats on either diet were lower than SR on LS diet. Increased dietary salt reduced plasma prostacyclin levels in SR, but not in SS rats. Plasma total 8-isoprostane was elevated in both SS and SR rats on HS diet compared with either strain on LS diet. Plasma levels of total glutathione were reduced in SS compared with SR rats, regardless of the level of dietary salt intake. The whole blood ratio of reduced-to-oxidized glutathione (GSH/GSSG) as well as the kidney total glutathione were lower in SS rats on HS diet. Aortic superoxide production in both strains on HS diet was increased compared with the animals on LS diet. CONCLUSIONS: These data suggest that HS diet may indirectly induce endothelial dysfunction through intermediate mechanisms that are associated with oxidative stress.[1]

References

  1. The role of oxidative stress in salt-induced hypertension. Bayorh, M.A., Ganafa, A.A., Socci, R.R., Silvestrov, N., Abukhalaf, I.K. Am. J. Hypertens. (2004) [Pubmed]
 
WikiGenes - Universities