The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Low-affinity receptor-mediated induction of superoxide by N-formyl-methionyl-leucyl-phenylalanine and WKYMVm in IMR90 human fibroblasts.

We investigated in IMR90 cells the effects of N-formyl-Met-Leu-Phe (N-fMLP) and WKYMVm (W peptide) on activation of the NADPH oxidase-like enzyme. In serum-deprived human fibroblasts, exposure to 100 microM N-fMLP or 10 microM peptide W for 1 min induced both p47phox translocation and NADPH-dependent superoxide generation. These effects were in large part mediated by prevention of the rapid activation of extracellular signal-regulated kinases (ERKs) by preincubation with the MEK1 inhibitor PD098059. Furthermore, responses to N-fMLP or W peptide were inhibited by pertussis toxin, suggesting the involvement of a seven-transmembrane G protein-coupled receptor(s) for peptides. RT-PCR experiments demonstrated the expression in these cells of the low-affinity receptor FPRL1, but not the high-affinity receptor FPR. Incubation with radiolabeled WKYMVm, which had a higher efficiency on FPRL1, revealed that human fibroblasts express binding sites for 125I-WKYMVm that are specifically displaced by increasing concentrations of unlabeled ligand. Analysis of the binding data predicted a Kd of 155.99 nM and a receptor density of about 16,200 molecules/cell. HEK293 cells, which express a NADPH oxidase-like enzyme but not formyl peptide receptors, transiently transfected with FPRL1 cDNA produced superoxide on stimulation with N-fMLP or W peptide, demonstrating that this receptor is biologically functional.[1]

References

  1. Low-affinity receptor-mediated induction of superoxide by N-formyl-methionyl-leucyl-phenylalanine and WKYMVm in IMR90 human fibroblasts. Ammendola, R., Russo, L., De Felice, C., Esposito, F., Russo, T., Cimino, F. Free Radic. Biol. Med. (2004) [Pubmed]
 
WikiGenes - Universities