The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

A direct role for Fgf but not Wnt in otic placode induction.

Induction of the otic placode, which gives rise to all tissues comprising the inner ear, is a fundamental aspect of vertebrate development. A number of studies indicate that fibroblast growth factor ( Fgf), especially Fgf3, is necessary and sufficient for otic induction. However, an alternative model proposes that Fgf must cooperate with Wnt8 to induce otic differentiation. Using a genetic approach in zebrafish, we tested the roles of Fgf3, Fgf8 and Wnt8. We demonstrate that localized misexpression of either Fgf3 or Fgf8 is sufficient to induce ectopic otic placodes and vesicles, even in embryos lacking Wnt8. Wnt8 is expressed in the hindbrain around the time of otic induction, but loss of Wnt8 merely delays expression of preotic markers and otic vesicles form eventually. The delay in otic induction correlates closely with delayed expression of fgf3 and fgf8 in the hindbrain. Localized misexpression of Wnt8 is insufficient to induce ectopic otic tissue. By contrast, global misexpression of Wnt8 causes development of supernumerary placodes/vesicles, but this reflects posteriorization of the neural plate and consequent expansion of the hindbrain expression domains of Fgf3 and Fgf8. Embryos that misexpress Wnt8 globally but are depleted for Fgf3 and Fgf8 produce no otic tissue. Finally, cells in the preotic ectoderm express Fgf (but not Wnt) reporter genes. Thus, preotic cells respond directly to Fgf but not Wnt8. We propose that Wnt8 serves to regulate timely expression of Fgf3 and Fgf8 in the hindbrain, and that Fgf from the hindbrain then acts directly on preplacodal cells to induce otic differentiation.[1]


  1. A direct role for Fgf but not Wnt in otic placode induction. Phillips, B.T., Storch, E.M., Lekven, A.C., Riley, B.B. Development (2004) [Pubmed]
WikiGenes - Universities