The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Arsenic induces human keratinocyte apoptosis by the FAS/FAS ligand pathway, which correlates with alterations in nuclear factor-kappa B and activator protein-1 activity.

Epidemiologic studies demonstrated that long-term exposure to arsenic induces arsenical skin cancers, including Bowen's disease. Immunohistochemically, Bowen's disease shows proliferating and apoptotic characteristics. The transcription factors nuclear factor-kappa B (NF-kappa B) and activator protein-1 (AP-1) functionally regulate cell proliferation, transformation, and apoptosis. To investigate the mechanism of arsenic-induced apoptosis and related alterations in NF-kappa B and AP-1 activity, we exposed cultured human foreskin keratinocytes to different concentrations of sodium arsenite. At lower concentrations (< or =1 microM), arsenic induced keratinocyte proliferation and enhanced both NF-kappa B and AP-1 activity. At higher concentrations (> or =5 microM), arsenic induced keratinocyte apoptosis by the Fas/Fas ligand (FasL) pathway. At apoptosis induction concentrations, NF-kappa B activity was not enhanced; however, AP-1 activity was further enhanced. These results indicated that upregulation of NF-kappa B at lower arsenic concentrations was correlated with keratinocyte proliferation. In contrast, higher concentrations of arsenic enhanced AP-1 and induced Fas/FasL-associated apoptosis. The concentration-dependent arsenic effects on transcription factors activity can help to clarify the mechanisms in arsenic-induced proliferation and apoptosis in keratinocytes.[1]

References

 
WikiGenes - Universities