The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Effects of rexinoids on glucose transport and insulin-mediated signaling in skeletal muscles of diabetic (db/db) mice.

Rexinoids and thiazolidinediones (TZDs) are two classes of nuclear receptor ligands that induce insulin sensitization in diabetic rodents. TZDs are peroxisome proliferator-activated receptor gamma (PPARgamma) activators, whereas rexinoids are selective ligands for the retinoid X receptors (RXRs). Activation of both the insulin receptor substrates (IRSs)/Akt and the c-Cbl-associated protein (CAP)/c-Cbl pathways are important in regulating insulin-stimulated glucose transport. We have compared the effects of a rexinoid (LG268) and a TZD (rosiglitazone) on these two signal pathways in skeletal muscle of diabetic (db/db) mice. The results we have obtained show that treatment of db/db mice with either LG268 or rosiglitazone for 2 weeks results in a significant increase in insulin-stimulated glucose transport activity in skeletal muscle. Treatment with LG268 increases insulin-stimulated IRS-1 tyrosine phosphorylation and Akt phosphorylation in skeletal muscle without affecting the activity of the CAP/c-Cbl pathway. In contrast, rosiglitazone increases the levels of CAP expression and insulin-stimulated c-Cbl phosphorylation without affecting the IRS-1/Akt pathway. The effects of LG268 on the IRS-1/Akt pathway were associated with a decrease in the level of IRS-1 Ser(307) phosphorylation. Taken together, these data suggest that rexinoids improve insulin sensitivity via changes in skeletal muscle metabolism that are distinct from those induced by TZDs. Rexinoids represent a novel class of insulin sensitizers with potential applications in the treatment of insulin resistance.[1]

References

  1. Effects of rexinoids on glucose transport and insulin-mediated signaling in skeletal muscles of diabetic (db/db) mice. Shen, Q., Cline, G.W., Shulman, G.I., Leibowitz, M.D., Davies, P.J. J. Biol. Chem. (2004) [Pubmed]
 
WikiGenes - Universities